

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/rtd-theme-stuff/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/rtd-theme-stuff/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

REX-Ray [image: GoDoc] [http://godoc.org/github.com/codedellemc/rexray] [image: Build Status] [https://travis-ci.org/codedellemc/rexray] [image: Go Report Card] [http://goreportcard.com/report/codedellemc/rexray] [image: codecov.io] [https://codecov.io/github/codedellemc/rexray?branch=master] [image: Download] [https://dl.bintray.com/emccode/rexray/stable/latest/]

REX-Ray provides a vendor agnostic storage orchestration engine. The primary
design goal is to provide persistent storage for Docker, Kubernetes, and Mesos.

It is additionally available as a Go package, CLI tool, and Linux service which
enables it to be used for additional use cases.

Documentation [image: Docs] [http://rexray.readthedocs.org/en/stable/]

You will find complete documentation for REX-Ray at rexray.readthedocs.org [http://rexray.readthedocs.org/en/stable/], including
licensing [http://rexray.readthedocs.org/en/stable/about/license/] and
support [http://rexray.readthedocs.org/en/stable/#getting-help] information.
Documentation provided at RTD is based on the latest stable build. The /.docs
directory in this repo will refer to the latest or specific commit.

Architecture

REX-Ray is available as a standalone process today and as a distributed
model of client-server. The client performs a level abstraction of local
host processes (request for volume attachment, discovery, format, and mounting
of devices) while the server provides the necessary abstraction of the
control plane for multiple storage platforms/

Storage Provider Support

The following storage providers and platforms are supported by REX-Ray.

Provider | Storage Platform(s)
———————-|——————–
Amazon EC2 | EBS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-ebs], EFS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-efs], S3FS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-s3fs]
Ceph | RBD [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#ceph-rbd]
Dell EMC | ScaleIO [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-scaleio], Isilon [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-isilon]
DigitalOcean | Block Storage [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#do-block-storage]
FittedCloud | EBS Optimizer [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/#ebs-optimizer]
Google | GCE Persistent Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#gce-persistent-disk]
Microsoft | Azure Unmanaged Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#azure-ud]
VirtualBox | Virtual Media [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#virtualbox]

Operating System Support

The following operating systems are supported by REX-Ray:

Operating System | Command Line | Service
—————–|————–|———–
CentOS 7 | Yes | Yes
CoreOS | Yes | Yes
RHEL 7 | Yes | Yes
Ubuntu 14+ | Yes | Yes

Installation

The following command will install the REX-Ray client-server tool. If using
CentOS, Debian, RHEL, or Ubuntu the necessary service manager is used
to bootstrap the process on startup

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -

Runtime - CLI

REX-Ray can be run as an interactive CLI to perform volume management
capabilities.

$ export REXRAY_SERVICE=ebs
$ export EBS_ACCESSKEY=access_key
$ export EBS_SECRETKEY=secret_key
$ rexray volume ls
ID Name Status Size
vol-6ac6c7d6 attached 8

Runtime - Service (Docker)

Additionally, it can be run as a service to support Docker, Mesos, and other
platforms that can communicate through HTTP/JSON.

$ export REXRAY_SERVICE=ebs
$ export EBS_ACCESSKEY=access_key
$ export EBS_SECRETKEY=secret_key
$ rexray service start
Starting REX-Ray...SUCCESS!

 The REX-Ray daemon is now running at PID XX. To
 shutdown the daemon execute the following command:

 sudo /usr/bin/rexray stop

$ docker run -ti --volume-driver=rexray -v test:/test busybox
$ df -h /test

Runtime - Docker Plugin

Starting with Docker 1.13, Docker now supports a new plugin archtitecture in
which plugins can be installed as containers.

$ docker plugin install rexray/ebs EBS_ACCESSKEY=access_key EBS_SECRETKEY=secret_key
Plugin "rexray/ebs:latest" is requesting the following privileges:
 - network: [host]
 - mount: [/dev]
 - allow-all-devices: [true]
 - capabilities: [CAP_SYS_ADMIN]
Do you grant the above permissions? [y/N] y
latest: Pulling from rexray/ebs
2ef3a0b3d192: Download complete
Digest: sha256:86a3bf7fdab857c955d7ef3fb94c01e350e34ba0f7fd3d0bd485e45f1592e1c2
Status: Downloaded newer image for rexray/ebs:latest
Installed plugin rexray/ebs:latest

$ docker plugin ls
ID NAME DESCRIPTION ENABLED
450420731dc3 rexray/ebs:latest REX-Ray for Amazon EBS true

$ docker run -ti --volume-driver=rexray/ebs -v test:/test busybox
$ df -h /test

Code of Conduct

1. Purpose

A primary goal of REX-Ray is to be inclusive to the largest number of contributors, with the most varied and diverse backgrounds possible. As such, we are committed to providing a friendly, safe and welcoming environment for all, regardless of gender, sexual orientation, ability, ethnicity, socioeconomic status, and religion (or lack thereof).

This code of conduct outlines our expectations for all those who participate in our community, as well as the consequences for unacceptable behavior.

We invite all those who participate in REX-Ray to help us create safe and positive experiences for everyone.

2. Open [Source/Culture/Tech] Citizenship

A supplemental goal of this Code of Conduct is to increase open [source/culture/tech] citizenship by encouraging participants to recognize and strengthen the relationships between our actions and their effects on our community.

Communities mirror the societies in which they exist and positive action is essential to counteract the many forms of inequality and abuses of power that exist in society.

If you see someone who is making an extra effort to ensure our community is welcoming, friendly, and encourages all participants to contribute to the fullest extent, we want to know.

3. Expected Behavior

The following behaviors are expected and requested of all community members:

	Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this community.

	Exercise consideration and respect in your speech and actions.
Attempt collaboration before conflict.

	Refrain from demeaning, discriminatory, or harassing behavior and speech.

	Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem inconsequential.

	Remember that community event venues may be shared with members of the public; please be respectful to all patrons of these locations.

4. Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

	Violence, threats of violence or violent language directed against another person.

	Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

	Posting or displaying sexually explicit or violent material.

	Posting or threatening to post other people’s personally identifying information (“doxing”).

	Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

	Inappropriate photography or recording.

	Inappropriate physical contact. You should have someone’s consent before touching them.

	Unwelcome sexual attention. This includes, sexualized comments or jokes; inappropriate touching, groping, and unwelcomed sexual advances.

	Deliberate intimidation, stalking or following (online or in person).

	Advocating for, or encouraging, any of the above behavior.

	Sustained disruption of community events, including talks and presentations.

5. Consequences of Unacceptable Behavior

Unacceptable behavior from any community member, including sponsors and those with decision-making authority, will not be tolerated.

Anyone asked to stop unacceptable behavior is expected to comply immediately.

If a community member engages in unacceptable behavior, the community organizers may take any action they deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning (and without refund in the case of a paid event).

6. Reporting Guidelines

If you are subject to or witness unacceptable behavior, or have any other concerns, please notify a community organizer as soon as possible by contacting a core team member.

Additionally, community organizers are available to help community members engage with local law enforcement or to otherwise help those experiencing unacceptable behavior feel safe. In the context of in-person events, organizers will also provide escorts as desired by the person experiencing distress.

7. Addressing Grievances

If you feel you have been falsely or unfairly accused of violating this Code of Conduct, you should notify the REX-Ray team with a concise description of your grievance.

8. Scope

We expect all community participants (contributors, paid or otherwise; sponsors; and other guests) to abide by this Code of Conduct in all community venues–online and in-person–as well as in all one-on-one communications pertaining to community business.

This code of conduct and its related procedures also applies to unacceptable behavior occurring outside the scope of community activities when such behavior has the potential to adversely affect the safety and well-being of community members.

9. Contact info

To report or discuss a suspected violation of this code of conduct by a community member, you may contact any of the team directly and in confidence:

	Andrew Kutz

	Clint Kitson

To report or discuss a suspected violation of this code of conduct by a member of the core team, you may contact any of these people in confidence:

	Josh Bernstein, VP @ Dell EMC
	email: joshua.bernstein@dell.com

	twitter: @quityourjoshing [http://twitter.com/quityourjoshing]

10. License and attribution

This Code of Conduct is distributed under a Creative Commons Attribution-ShareAlike license.

It is derived from the Citizen Code of Conduct at http://citizencodeofconduct.org/.

Portions of text dervied from the Django Code of Conduct and the Geek Feminism Anti-Harassment Policy.

Revision 2.1. Posted 4 February 2015.

Revision 2.0, adopted by the Stumptown Syndicate board on 10 January 2013. Posted 17 March 2013.

Contributing to REX-Ray

The REX-Ray project welcomes, and depends, on contributions from developers and
users in the open source community. Contributions can be made in a number of
ways, a few examples are:

	Code patches via pull requests

	Documentation improvements

	Bug reports and patch reviews

	OS, Storage, and Volume Drivers

	A distributed server/client model with profile support

Reporting an Issue

Please include as much detail as you can. This includes:

	The OS type and version

	The REX-Ray version

	The storage system in question

	A set of logs with debug-logging enabled that show the problem

Testing the Development Version

If you want to just install and try out the latest development version of
REX-Ray you can do so with the following command. This can be useful if you
want to provide feedback for a new feature or want to confirm if a bug you
have encountered is fixed in the git master. It is strongly recommended
that you do this within a virtual environment.

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s -- unstable

Installing for Development

First you’ll need to fork and clone the repository. Once you have a local
copy, run the following command.

make deps && make

This will install REX-Ray into your GOPATH and you’ll be able to make changes
locally, test them, and commit ideas and fixes back to your fork of the
repository.

Running the tests

To run the tests, run the following commands:

make test

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

Summary

Please enter a summary of the issue here.

New Feature

This section is for issues that relate to suggested enhancements or other
ideas that may improve REX-Ray. Please provide as much detail as possible
regarding the idea. This issue will then serve as the means to have a
discussion about your idea!

Bug Reports

This section is for issues that relate to discovered problems or bugs.

Version

Please paste the output of rexray version. For example:

$ rexray version
REX-Ray

Binary: /usr/bin/rexray
Flavor: client+agent+controller
SemVer: 0.7.0
OsArch: Linux-x86_64
Branch: v0.7.0
Commit: a20a838ca70838a914b632637398824fcb10d0db
Formed: Mon, 23 Jan 2017 10:14:32 EST

libStorage

SemVer: 0.4.0
OsArch: Linux-x86_64
Branch: v0.7.0
Commit: a1103d3f215117f7b9f51dae2b24f852c9c54995
Formed: Mon, 23 Jan 2017 10:14:12 EST

Expected Behavior

Please describe in detail the expected behavior.

Actual Behavior

Please describe in detail the actual behavior.

Steps To Reproduce

Please list the steps to reproduce the issue in this section.

	The first step should always be enabling debug logging.

	Open the file /etc/rexray/config.yml

	Set the log level for both REX-Ray and libStorage to debug and enable
HTTP request and response tracing for libStorage:

rexray:
 logLevel: debug
libstorage:
 logging:
 level: debug
 httpRequests: true
 httpResponses: true

	Please list each step with as much detail as possible.

	The more information gathered up front, the easier it is to solve
the problem.

	Thank you!

Configuration Files

Please paste any related configuration files, such as /etc/rexray/config.yml
in this section. Please use the appropriate formatting when pasting YAML.
content. For example:

rexray:
 logLevel: debug
libstorage:
 logging:
 level: debug
 httpRequests: true
 httpResponses: true
 service: ebs
ebs:
 accessKey: 123456
 secretKey: abcdef

Proper formatting of pasted content is very important as structured data can
sometimes be accidentally recorded incorrectly, affecting the desired outcome.

Logs

It is very important when filing an issue to include associated logs. There are
two different logs about which to be concerned: the service log (if REX-Ray is
running as a service) and the client log.

Service Log

The REX-Ray service log file is stored at /var/log/rexray/rexray.log. Instead
of pasting the entire log file into this issue, please create a new
gist [https://gist.github.com/] and paste the log file’s contents there.
Please name the file rexray-service.log in the gist. The proper extension will
indicate how to format the contents.

Client Log

The REX-Ray client will emit all of its logs to the console when operating with
debug logging enabled. Simply copy the contents of the console and paste them
into the same gist as above naming the file rexray-client.log.sh. The sh
extension will cause the contents to be formatted as if they were emitted
to the shell, which they were.

REX-Ray

Openly serious about storage

REX-Ray is an open source, storage management solution designed to support
container runtimes such as Docker and Mesos. REX-Ray enables stateful
applications, such as databases, to persist and maintain its data after the life
cycle of the container has ended. Built-in high availability enables
orchestrators such as Docker Swarm [https://docs.docker.com/engine/swarm/],
Kubernetes [http://kubernetes.io/], and Mesos
Frameworks [http://mesos.apache.org/] like
Marathon [https://mesosphere.github.io/marathon/] to automatically orchestrate
storage tasks between hosts in a cluster.

Built on top of the libStorage [http://libstorage.readthedocs.io/en/stable]
framework, REX-Ray’s simplified architecture consists of a single binary and
runs as a stateless service on every host using a configuration file to
orchestrate multiple storage platforms.

[image: REX-Ray Architecture]

!!! note “note”

The current REX-Ray release omits support for several, previously verified
storage platforms. These providers will be reintroduced incrementally,
beginning with 0.4.1. If an absent driver prevents the use of REX-Ray,
please continue to use 0.3.3 until such time the storage platform is re-
introduced as a part of the
[libStorage](http://libstorage.readthedocs.io/en/stable) framework.
Instructions on how to [install](./user-guide/installation.md#rex-ray-033)
and [configure](http://rexray.readthedocs.io/en/v0.3.3) REX-Ray 0.3.3 are
both available.

Supported Technologies

Storage Provider Support

The following storage providers and platforms are supported by REX-Ray.

Provider | Storage Platform(s)
———————-|——————–
Amazon EC2 | EBS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-ebs], EFS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-efs], S3FS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-s3fs]
Ceph | RBD [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#ceph-rbd]
Dell EMC | ScaleIO [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-scaleio], Isilon [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-isilon]
DigitalOcean | Block Storage [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#do-block-storage]
FittedCloud | EBS Optimizer [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/#ebs-optimizer]
Google | GCE Persistent Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#gce-persistent-disk]
Microsoft | Azure Unmanaged Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#azure-ud]
VirtualBox | Virtual Media [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#virtualbox]

Operating System Support

The following operating systems (OS) are supported by REX-Ray:

OS | Command Line | Service
—————|————–|———–
Ubuntu 12+ | Yes | Yes
Debian 6+ | Yes | Yes
RedHat | Yes | Yes
CentOS 6+ | Yes | Yes
CoreOS | Yes | Yes
TinyLinux (boot2docker)| Yes | Yes
OS X Yosemite+ | Yes | No
Windows | No | No

Container Runtime Support

REX-Ray currently supports the following container platforms:

Platform | Use
——————|————————-
Docker | Volume Driver Plugin
Mesos | Volume Driver Isolator module
Mesos + Docker | Volume Driver Plugin

Container Orchestration Support

REX-Ray currently supports the following container orchestrators:

Orchestrator | Container Runtime
——————|————————-
Docker Swarm | Docker
Kubernetes | Docker
Marathon | Docker, Mesos Containerizer

Quick Start

Install

The following command will download the most recent and stable build of REX-Ray
and install to /usr/bin/rexray on Linux systems. REX-Ray will be registered
as either a SystemD or SystemV service depending upon the OS.

$ curl -sSL https://dl.bintray.com/emccode/rexray/install | sh

Configure

REX-Ray requires a configuration file for storing details used to communicate
with storage providers. This can include authentication credentials and driver-
specific configuration options. Use the REX-Ray Configuration
Generator [http://rexrayconfig.codedellemc.com/] or refer to the libStorage
Storage Providers [documentation](http://libstorage.readthedocs.io/en/stable
/user-guide/storage-providers/) for sample configurations of all supported
storage platforms. Additionally, look at
core properties &
logging for advanced
configurations.

Create a configuration file on the host at /etc/rexray/config.yml. Here is a
simple example for using Oracle VirtualBox:

libstorage:
 service: virtualbox

Refer to the [VirtualBox
documentation](http://libstorage.readthedocs.io/en/stable/user-guide/storage-
providers/#virtualbox) for additional VirtualBox configuration options.

Start the VirtualBox SOAP API service using:

$ vboxwebsrv -H 0.0.0.0 -v

From here, REX-Ray can now be used as a command line tool. View the commands
available:

$ rexray --help

To verify the configuration file is working, use REX-Ray to list the volumes:

$ rexray volume ls
ID Name Status Size
1b819454-a280-4cff-aff5-141f4e8fd154 libStorage.vmdk attached 16

If there is an error, use the -l debug flag and consult debugging
instructions.

Start as a Service

Container platforms rely on REX-Ray to be running as a service to function
properly. For instance, Docker communicates to the REX-Ray Volume Driver via a
UNIX socket file.

$ rexray service start

Demo

View the Vagrant Demo as well as visit the {code}
Labs [https://github.com/codedellemc/labs] for more information on ways to
setup REX-Ray and run different types of applications such as Postgres and
Minecraft.

Getting Help

Having issues? No worries, let’s figure it out together.

Debug

The -l debug flag can be appended to any command in order to get verbose
output. The following command will list all of the volumes visible to REX-Ray
with debug logging enabled:

$ rexray volume -l debug ls

For an example of the full output from the above command, please refer to this
Gist [https://gist.github.com/akutz/df2afe2dc43f75b67b8977f398095ed7].

GitHub and Slack

If a little extra help is needed, please don’t hesitate to use GitHub
issues [https://github.com/codedellemc/rexray/issues] or join the active
conversation on the {code} by Dell EMC Community Slack
Team [http://community.codedellemc.com/] in the #project-rexray channel

Release Process

How to release REX-Ray

Project Stages

This project has three parallels stages of release:

Name | Description
—–|————
unstable | The tip or HEAD of the master branch is referred to as unstable
staged | A commit tagged with the suffix -rc\d+ such as v0.3.1-rc2 is a staged release. These are release candidates.
stable | A commit tagged with a version sans -rc\d+ suffix such as v0.3.1 is a stable release.

There are no steps necessary to create an unstable release as that happens
automatically whenever an untagged commit is pushed to master. However, the
following workflow should be used when tagging a staged release candidate
or stable release.

	Review outstanding issues & pull requests

	Prepare release notes

	Update the version file

	Commit & pull request

	Tag the release

Review Issues & Pull Requests

The first step to a release is to review the outstanding
issues [https://github.com/codedellemc/rexray/issues] and
pull requests [https://github.com/codedellemc/rexray/pulls] that are tagged for
the release in question.

If there are outstanding issues requiring changes or pending pull requests to
be merged, handle those prior to tagging any commit as a release candidate or
release.

It is highly recommended that pull requests be merged synchronously after
rebasing each subsequent one off of the new tip of master. Remember, while
GitHub will update a pull request as in conflict if a change to master
results in a merge conflict with the pull request, GitHub will not force a
new build to spawn unless the pull request is actually updated.

At the very minimum a pull request’s build should be re-executed prior to the
pull request being merged if master has changed since the pull request was
opened.

Prepare Release Notes

Update the release notes at .docs/about/release-notes.md. This file is the
project’s authoritative changelog and should reflect new features, fixes, and
any significant changes.

The most recent, stable version of the release notes are always available
online at
REX-Ray’s documentation site [http://rexray.rtfd.org/en/stable/about/release-notes/].

Update Version File

The VERSION file exists at the root of the project and should be updated to
reflect the value of the intended release.

For example, if creating the first release candidate for version 0.3.1, the
contents of the VERSION file should be a single line 0.3.1-rc1 followed by
a newline character:

$ cat VERSION
0.3.1-rc1

If releasing version 0.3.1 proper then the contents of the VERSION file
should be 0.3.1 followed by a newline character:

$ cat VERSION
0.3.1

Commit & Pull Request

Once all outstanding issues and pull requests are handled, the release notes
and version are updated, it’s time to create a commit.

Please make sure that the changes to the release notes and version files are
a part of the same commit. This makes identifying the aspects of a release,
staged or otherwise, far easier for future developers.

A release’s commit message can either be a reflection of the release notes or
something simple. Either way the commit message should have the following
subject format and first line in its body:

Release Candidate 0.3.1-rc1

This patch marks release candidate 0.3.1-rc1.

If the commit message is longer it should simply reflect the same information
from the release notes.

Once committed push the change to a fork and open a pull request. Even though
this commit marks a staged or official release, the pull request system is still
used to assure that the build completes successfully and there are no unforeseen
errors.

Tag the Release

Once the pull request marking the staged or stable release has been merged
into upstream‘s master it’s time to tag the release.

Tag Format

The release tag should follow a prescribed format depending upon the release
type:

Release Type | Tag Format | Example
——–|———|———
staged | vMAJOR.MINOR.PATCH-rc[0-9] | v0.3.1-rc1
stable | vMAJOR.MINOR.PATCH | v0.3.1

Tag Methods

There are two ways to tag a release:

	GitHub Releases [https://github.com/codedellemc/rexray/releases/new]

	Command Line

Command Line

If tagging a release via the command line be sure to fetch the latest changes
from upstream‘s master and either merge them into your local copy of
master or reset the local copy to reflect upstream prior to creating
any tags.

The following combination of commands can be used to create a tag for
0.3.1 Release Candidate 1:

git fetch upstream && \
 git checkout master && \
 git reset --hard upstream/master && \
 git tag -a -m v0.3.1-rc1 v0.3.1-rc1

The above example combines a few operations:

	The first command fetches the upstream changes

	The local master branch is checked out

	The local master branch is hard reset to upstream/master

	An annotated tag is created on master for v0.3.1-rc1, or 0.3.1 Release
Candidate 1, with a tag message of v0.3.1-rc1.

Please note that the third step will erase any changes that exist only in the
local master branch that do not also exist in the remote, upstream copy.
However, if the two branches are not equal this method should not be used to
create a tag anyway.

The above steps do not actually push the tag upstream. This is to allow for one
final review of all the changes before doing so since the appearance of a new,
annotated tag in the repository will cause the project’s build system to
automatically kick off a build that will result in the release of a staged or
stable release. For stable releases the project’s documentation will also be
updated.

Once positive everything looks good simply execute the following command to
push the tag to the upstream repository:

git push upstream v0.3.1-rc1

Build Reference

How to build REX-Ray

Basic Builds

The following one-line command is the quickest, simplest, and most
deterministic approach to building REX-Ray:

$ git clone https://github.com/codedellemc/rexray && make -C rexray

!!! note “note”

The above `make` command defaults to the `docker-build` target only if
Docker is detected and running on a host, otherwise the `build` target is
used. For more information about the `build` target, please see the
[Advanced Builds](#advanced-builds) section.

Basic Build Requirements

Building REX-Ray with Docker has the following requirements:

Requirement | Version
————|——–
Operating System | Linux, OS X
Docker [https://www.docker.com/] | >=1.11
GNU Make [https://www.gnu.org/software/make/] | >=3.80
Git [https://git-scm.com/] | >= 1.7

OS X ships with a very old version of GNU Make, and a package manager like
Homebrew [http://brew.sh/] can be used to install the required version.

Basic Build Targets

The following targets are available when building REX-Ray with Docker:

Target	Description
—	—
docker-build	Builds REX-Ray inside a Docker container.
docker-test	Executes all of the REX-Ray tests inside the container.
docker-clean	This target stops and removes the default container used for REX-Ray builds. The name of the default container is build-rexray.
docker-clobber	This target stops and removes all Docker containers that have a name that matches the name of the configured container prefix (default prefix is build-rexray).
docker-list	Lists all Docker containers that have a name that matches the name of the configured prefix (default prefix is build-rexray).

Basic Build Options

The following options (via environment variables) can be used to influence
how REX-Ray is built with Docker:

| Environment Variable | Description |
| — | — |
| DRIVERS | This variable can be set to a space-delimited list of driver names in order to indicate which storage platforms to support. For example, the command $ DRIVERS="ebs scaleio" make docker-build would build REX-Ray for only the EBS and ScaleIO storage platforms.
| DBUILD_ONCE | When set to 1, this environment variable instructs the Makefile to create a temporary, one-time use container for the subsequent build. The container is removed upon a successful build. If the build fails the container is not removed. This is because Makefile error logic is lacking. However, make docker-clobber can be used to easily clean up these containers. The containers will follow a given pattern using the container prefix (build-rexray is the default prefix value). The one-time containers use PREFIX-EPOCH. For example, build-rexray-1474691232. |
| DGOOS | This sets the OS target for which to build the REX-Ray binaries. Valid values are linux and darwin. If omitted the host OS value returned from uname -s is used instead. |
| DLOCAL_IMPORTS | Specify a list of space-delimited import paths that will be copied from the host OS’s GOPATH into the container build’s vendor area, overriding the dependency code that would normally be fetched by Glide.

For example, the project’s glide.yaml file might specify to build REX-Ray with libStorage v0.2.1. However, the following command will build REX-Ray using the libStorage sources on the host OS at $GOPATH/src/github.com/codedellemc/libstorage:

$ DLOCAL_IMPORTS=github.com/codedellemc/libstorage make docker-build
Using local sources can sometimes present a problem due to missing dependencies. Please see the next environment variable for instructions on how to overcome this issue. |
| DGLIDE_YAML | Specify a file that will be used for the container build in place of the standard glide.yaml file.

This is necessary for occasions when sources injected into the build via the DLOCAL_IMPORTS variable import packages that are not imported by the package specified in the project’s standard glide.yaml file.

For example, if glide.yaml specifies that REX-Ray depends upon AWS SDK v1.2.2, but DLOCAL_IMPORTS specifies the value github.com/aws/aws-sdk-go and the AWS SDK source code on the host includes a new dependency not present in the v1.2.2 version, Glide will not fetch the new dependency when doing the container build.

So it may be necessary to use DGLIDE_YAML to provide a superset of the project’s standard glide.yaml file which also includes the dependencies necessary to build the packages specified in DLOCAL_IMPORTS. |

Advanced Builds

While building REX-Ray with Docker is simple, it ultimately relies on the
same Makefile included in the REX-Ray repository and so it’s entirely
possible (and often desirable) to build REX-Ray directly.

Advanced Build Requirements

This project has very few build requirements, but there are still one or two
items of which to be aware. Also, please note that this are the requirements to
build REX-Ray, not run it.

Requirement | Version
————|——–
Operating System | Linux, OS X
Go [https://golang.org/] | >=1.6
GNU Make [https://www.gnu.org/software/make/] | >=3.80
Glide [https://glide.sh/] | >=0.10
X-Code Command Line Tools (OS X only) [https://developer.apple.com/library/ios/technotes/tn2339/_index.html] | >= OS X 10.9
Linux Kernel Headers (Linux only) | >=Linux Kernel 3.13
GNU C Compiler [https://gcc.gnu.org/] (Linux only) | >= 4.8
Perl [https://www.perl.org/] | >= 5.0
Git [https://git-scm.com/] | >= 1.7

OS X ships with a very old version of GNU Make, and a package manager like
Homebrew [http://brew.sh/] can be used to install the required version.

It’s also possible to use GCC as the Cgo compiler for OS X or to use Clang on
Linux, but by default Clang is used on OS X and GCC on Linux.

Advanced Build Targets

The following targets are available when building REX-Ray directly:

Target	Description
—	—
build	Builds REX-Ray.
test	Executes all of the REX-Ray tests.
clean	This target removes all of the source file markers.
clobber	This is the same as clean but also removes any produced artifacts.

Advanced Build Options

The following options (via environment variables) can be used to influence
how REX-Ray is built:

| Environment Variable | Description |
| — | — |
| DRIVERS | This variable can be set to a space-delimited list of driver names in order to indicate which storage platforms to support. For example, the command $ DRIVERS="ebs scaleio" make build would build REX-Ray for only the EBS and ScaleIO storage platforms.

Version File

There is a file at the root of the project named VERSION. The file contains
a single line with the target version of the project in the file. The version
follows the format:

(?<major>\d+)\.(?<minor>\d+)\.(?<patch>\d+)(-rc\d+)?

For example, during active development of version 0.1.0 the file would
contain the version 0.1.0. When it’s time to create 0.1.0‘s first
release candidate the version in the file will be changed to 0.1.0-rc1. And
when it’s time to release 0.1.0 the version is changed back to 0.1.0.

So what’s the point of the file if it’s basically duplicating the utility of a
tag? Well, the VERSION file in fact has two purposes:

	First and foremost updating the VERSION file with the same value as that
of the tag used to create a release provides a single, contextual reason to
push a commit and tag. Otherwise some random commit off of master would
be tagged as a release candidate or release. Always using the commit that
is related to updating the VERSION file is much cleaner.

	The contents of the VERSION file are also used during the build process
as a means of overriding the output of a git describe. This enables the
semantic version injected into the produced binary to be created using
the targeted version of the next release and not just the value of the
last, tagged commit.

Project Guidelines

These are important.

People contributing code to this project must adhere to the following rules.
These standards are in place to keep code clean, consistent, and stable.

Documentation

There are two types of documentation: source and markdown.

Source Code

All source code should be documented in accordance with the
Go’s documentation rules [http://blog.golang.org/godoc-documenting-go-code].

Markdown

When creating or modifying the project’s README.md file or any of the
documentation in the .docs directory, please keep the following rules in
mind:

	All markdown should be limited to a width of 80 characters. This makes
the document easier to read in text editors. GitHub and ReadTheDocs still
produces the proper result when parsing the markdown.

	All links to internal resources should be relative.

	All links to markdown files should include the file extension.

For example, the below link points to the anchor basic-configuration on the
Configuration page:

/user-guide/config#basic-configuration

However, when the above link is followed when viewing this page directly from
the Github repository instead of the generated site documentation, the link
will return a 404.

While it’s recommended that users view the generated site documentation instead
of the source Markdown directly, we can still fix it so that the above link
will work regardless. To fix the link, simply make it relative and add the
Markdown file extension:

../user-guide/config.md#basic-configuration

Now the link will work regardless from where it’s viewed.

Style & Syntax

All source files should be processed by the following tools prior to being
committed. Any errors or warnings produced by the tools should be corrected
before the source is committed.

Tool | Description
—–|————
gofmt [https://golang.org/cmd/gofmt/] | A golang source formatting tool
golint [https://github.com/golang/lint] | A golang linter
govet [https://golang.org/cmd/vet/] | A golang source optimization tool
gocyclo [https://github.com/fzipp/gocyclo] | A golang cyclomatic complexity detection tool. No function should have a score above 0.15

If Atom [https://atom.io/] is your IDE of choice, install the
go-plus [https://atom.io/packages/go-plus] package, and it will execute all of
the tools above less gocyclo upon saving a file.

In lieu of using Atom as the IDE, the project’s Makefile automatically
executes the above tools as part of the build process and will fail the build
if problems are discovered.

Another option is to use a client-side, pre-commit hook to ensure that the
sources meet the required standards. For example, in the project’s .git/hooks
directory create a file called pre-commit and mark it as executable. Then
paste the following content inside the file:

#!/bin/sh
make fmt 1> /dev/null

The above script will execute prior to a Git commit operation, prior to even
the commit message dialog. The script will invoke the Makefile‘s fmt
target, formatting the sources. If the command returns a non-zero exit code,
the commit operation will abort with the error.

Code Coverage

All new work submitted to the project should have associated tests where
applicable. If there is ever a question of whether or not a test is applicable
then the answer is likely yes.

This project uses
Coveralls [https://coveralls.io/github/emccode/rexray] for code coverage, and
all pull requests are processed just as a build from master. If a pull request
decreases the project’s code coverage, the pull request will be declined until
such time that testing is added or enhanced to compensate.

It’s also possible to test the project locally while outputting the code
coverage. On the command line, from the project’s root directory, execute the
following:

$.build/test.sh
ok github.com/codedellemc/rexray/rexray/cli 0.039s coverage: 33.6% of statements
ok github.com/codedellemc/rexray/test 0.080s coverage: 94.0% of statements in github.com/codedellemc/rexray, github.com/codedellemc/rexray/core
...
ok github.com/codedellemc/rexray/util 0.024s coverage: 100.0% of statements
[0]akutz@pax:rexray$

The file test.sh in the .build directory is the same script executed during
the project’s automated build system. The only
difference is when executed locally the results are not submitted to Coveralls.
Still, using the test.sh file one can easily determine if a package’s coverage
has decreased and if additional testing is necessary.

Commit Messages

Commit messages should follow the guide 5 Useful Tips For a Better Commit
Message [https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message].
The two primary rules to which to adhere are:

	Commit message subjects should not exceed 50 characters in total and
should be followed by a blank line.

	The commit message’s body should not have a width that exceeds 72
characters.

For example, the following commit has a very useful message that is succinct
without losing utility.

commit e80c696939a03f26cd180934ba642a729b0d2941
Author: akutz <sakutz@gmail.com>
Date: Tue Oct 20 23:47:36 2015 -0500

 Added --format,-f option for CLI

 This patch adds the flag '--format' or '-f' for the
 following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

 The user can specify either '--format=yml|yaml|json' or
 '-f yml|yaml|json' in order to influence how the resulting,
 structured data is marshaled prior to being emitted to the console.

Please note that the output above is the full output for viewing a commit.
However, because the above message adheres to the commit message rules, it’s
quite easy to show just the commit’s subject:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s" -s
Added --format,-f option for CLI

It’s also equally simple to print the commit’s subject and body together:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s%n%n%b" -s
Added --format,-f option for CLI

This patch adds the flag '--format' or '-f' for the
following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

The user can specify either '--format=yml|yaml|json' or
'-f yml|yaml|json' in order to influence how the resulting,
structured data is marshaled prior to being emitted to the console.

Submitting Changes

All developers are required to follow the
GitHub Flow model [https://guides.github.com/introduction/flow/] when
proposing new features or even submitting fixes.

Please note that although not explicitly stated in the referenced GitHub Flow
model, all work should occur on a fork of this project, not from within a
branch of this project itself.

Pull requests submitted to this project should adhere to the following
guidelines:

	Branches should be rebased off of the upstream master prior to being
opened as pull requests and again prior to merge. This is to ensure that
the build system accounts for any changes that may only be detected during
the build and test phase.

	Unless granted an exception a pull request should contain only a single
commit. This is because features and patches should be atomic – wholly
shippable items that are either included in a release, or not. Please
squash commits on a branch before opening a pull request. It is not a
deal-breaker otherwise, but please be prepared to add a comment or
explanation as to why you feel multiple commits are required.

Licensing

The legal stuff

REX-Ray License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Contributing to REX-Ray

An introduction to contributing to the REX-Ray project

The REX-Ray project welcomes, and depends, on contributions from developers and
users in the open source community. Contributions can be made in a number of
ways, a few examples are:

	Code patches via pull requests

	Documentation improvements

	Bug reports and patch reviews

	OS, Storage, and Volume Drivers

	A distributed server/client model with profile support

Reporting an Issue

Please include as much detail as you can. This includes:

	The OS type and version

	The REX-Ray version

	The storage system in question

	A set of logs with debug-logging enabled that show the problem

Testing the Development Version

If you want to just install and try out the latest development version of
REX-Ray you can do so with the following command. This can be useful if you
want to provide feedback for a new feature or want to confirm if a bug you
have encountered is fixed in the git master. It is strongly recommended
that you do this within a virtual environment.

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s -- unstable

Installing for Development

First you’ll need to fork and clone the repository. Once you have a local
copy, run the following command.

make deps && make

This will install REX-Ray into your GOPATH and you’ll be able to make changes
locally, test them, and commit ideas and fixes back to your fork of the
repository.

Running the tests

To run the tests, run the following commands:

make test

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

Release Notes

Upgrading

To upgrade REX-Ray to the latest version, use curl install:

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh

Use rexray version to determine the currently installed version of REX-Ray:

$ rexray version
REX-Ray

Binary: /Users/akutz/Projects/go/bin/rexray
SemVer: 0.4.0
OsArch: Linux-x86_64
Branch: v0.4.0
Commit: c83f0237e60792cfe89c4255d7149b5670965539
Formed: Mon, 20 Jun 2016 20:56:48 CDT

libStorage

SemVer: 0.1.3
OsArch: Linux-x86_64
Branch: v0.1.3
Commit: 182a626937677a081b89651598ee2eac839308e7
Formed: Wed, 15 Jun 2016 16:27:36 CDT

Version 0.9.0 (2017/05/03)

This release introduces support for the Cinder storage driver and
multiple security-related enhancements, including default-to-TLS for
libStorage client/server communications, and service-scoped
authentication!

New Features

	Client Token Authentication (#475 [https://github.com/codedellemc/libstorage/issues/475])

	Cinder storage driver (#182 [https://github.com/codedellemc/libstorage/issues/182])

	Allow customization of default paths (#509 [https://github.com/codedellemc/libstorage/pull/509])

	TLS Known Hosts support (#510 [https://github.com/codedellemc/libstorage/pull/510])

Bug Fixes

	Return HTTP status 400 instead of 500 when attachment mask requires InstanceID or LocalDevices header and it is missing (#352 [https://github.com/codedellemc/libstorage/issues/352])

	Make sure all drivers return error if VolumeInspect doesn’t find volume (#396 [https://github.com/codedellemc/libstorage/issues/396])

	Ensure all drivers reject size 0 volume creation (#459 [https://github.com/codedellemc/libstorage/issues/459])

	Prevent possible endless loops in drivers when underlying API does not respond (#480 [https://github.com/codedellemc/libstorage/issues/480])

	Standardize log levels across libStorage client and server (#521 [https://github.com/codedellemc/libstorage/pull/521])

Enhancements

	Digital Ocean Block Storage driver now supports client/server topology (#432 [https://github.com/codedellemc/libstorage/issues/432])

	Improve error reporting (#504 [https://github.com/codedellemc/libstorage/pull/504], #128 [https://github.com/codedellemc/libstorage/issues/128])

	Improve driver config examples (#531 [https://github.com/codedellemc/libstorage/issues/531])

Thank You

Name | Blame——-|——
Mathieu Velten [https://github.com/MatMaul] | Mr. Velten, as his people alert you to the fact that he insists on being addressed, is a dubious individual. It’s apparent he’s old money, but it’s also not exactly clear from where his fortune originated. There are rumors in the back rooms of the shadiest gambling parlors of Monte Carlo that Mr. Velten was once an employee of an unnamed wing of a shadow government. A “cleaner” if you will. Maybe it was these experiences that make Mr. Velten so apt at slicing up Git commits. Is there really any difference between slicing up a full-grown man and hash series of changes? Mr. Velten is proof there isn’t.
Joe Topjian [https://github.com/jtopjian] | Joe insisted that we omit this pithy attempt at showing gratitude, but we simply could not do that. Not when Mr. Velten insisted it would be in our best interest to include Joe. Is this okay Mr. Velten? Can our families come home now? We did what you asked. Joe is awesome. We like Joe. See? We’re cooperating. Please Mr. Velten, just let them come home!

Version 0.8.2 (2017/03/28)

This is a minor release with some bug fixes, enhancements, and simplified
support for TLS.

New Features

	TLS Support (#447 [https://github.com/codedellemc/libstorage/issues/447])

Bug Fixes

	Handle varying rbd output format (#451 [https://github.com/codedellemc/libstorage/issues/451])

	Fix ScaleIO missing /dev/disk/by-id (#466 [https://github.com/codedellemc/libstorage/issues/466])

	Fix Linux integration driver’s encryption omission (#481 [https://github.com/codedellemc/libstorage/issues/481])

	Document Volume.AttachmentState (#483 [https://github.com/codedellemc/libstorage/issues/483])

Enhancements

	Update organization text (#774 [https://github.com/codedellemc/rexray/issues/774])

Version 0.8.1 (2017/02/24)

This is a minor release that reintroduces support for Go1.6 via
libStorage 0.5.1.

Bug Fixes

	Go1.6 support (#444 [https://github.com/codedellemc/libstorage/issues/444])

Version 0.8.0 (2017/02/24)

This is one of the largest releases in a while, including support for five new
storage platforms!

New Features

	Amazon Simple Storage Service FUSE (S3FS) support (#397 [https://github.com/codedellemc/libstorage/issues/397], #409 [https://github.com/codedellemc/libstorage/issues/409])

	Google Compute Engine Persistent Disk (GCEPD) support (#394 [https://github.com/codedellemc/libstorage/issues/394], #416 [https://github.com/codedellemc/libstorage/issues/416])

	DigitalOcean support (#392 [https://github.com/codedellemc/libstorage/issues/392])

	Microsoft Azure unmanaged disk support (#421 [https://github.com/codedellemc/libstorage/issues/421])

	FittedCloud support (#408 [https://github.com/codedellemc/libstorage/issues/408])

	Docker Volume Plug-in for EBS (#720 [https://github.com/codedellemc/rexray/issues/720])

	Docker Volume Plug-in for EFS (#729 [https://github.com/codedellemc/rexray/issues/729])

	Docker Volume Plug-in for Isilon (#727 [https://github.com/codedellemc/rexray/issues/727])

	Docker Volume Plug-in for S3FS (#724 [https://github.com/codedellemc/rexray/issues/724])

	Docker Volume Plug-in for ScaleIO (#725 [https://github.com/codedellemc/rexray/issues/725])

	REX-Ray on Alpine Linux support (#724 [https://github.com/codedellemc/rexray/issues/724])

	Storage-platform specific mount/unmount support (#399 [https://github.com/codedellemc/libstorage/issues/399])

	The ScaleIO tool drv_cfg is now an optional client-side dependency instead of required (#414 [https://github.com/codedellemc/libstorage/issues/414])

	Multi-cluster support for ScaleIO (#420 [https://github.com/codedellemc/libstorage/issues/420])

	Forced volume remove support (#717 [https://github.com/codedellemc/rexray/issues/717])

Bug Fixes

	Preemption fix (#413 [https://github.com/codedellemc/libstorage/issues/413])

	Ceph RBD monitored IP fix (#412 [https://github.com/codedellemc/libstorage/issues/412], #424 [https://github.com/codedellemc/libstorage/issues/424])

	Ceph RBD dashes in names fix (#425 [https://github.com/codedellemc/libstorage/issues/425])

	Fix for lsx-OS wait argument count (#401 [https://github.com/codedellemc/libstorage/issues/401])

	Build fixes (#403 [https://github.com/codedellemc/libstorage/issues/403])

Thank You

Name | Blame——-|——
Chris Duchesne [https://github.com/cduchesne] | Chris is my partner in crime when it comes to libStorage and REX-Ray. Without him I would have absolutely no one to take the fall for the heist I’m planning. So is Chris invaluable? Yeah, in that way, as the patsy who will do at least a dime while I’m on the beach sipping my drink, yeah, he’s invaluable.
Travis Rhoden [https://github.com/codenrhoden] | Travis, or as I call him, T-Dawg, is essential to “taking care of business.” He comes to work to chew bubblegum and kick butt, and he leaves the gum at home!
Vladimir Vivien [https://github.com/vladimirvivien] | A little known fact about Vladimir is that he’s been seeded in the top 10 of the last US Opens, but has had to withdrawal at the last minute before each of those tournaments due to other responsibilities. What those are? Who can say? Are they contracts on people’s lives? Perhaps. Are they appearances for Make a Wish? Probably. The only thing we know for sure is that when he is seen again, Vladimir seems rejuvenated and ready to conquer the tennis world yet again.
Steve Wong [https://github.com/cantbewong] | I’ve known Steve for a very long time, and in that time I can say I’ve never once seen him in the same room as President Barack Obama. Now, does that mean that I can definitively state that Steve and President Obama are in fact the same person. No, of course not. There are obvious differences. The most glaring of course being that Steve wears glasses and President Obama does not. However, other than that the two men are nearly identical. I guess we’ll never know if Steve Wong lives a double life as the 44th President of these United States, but I personally would like to think that yeah, he does.
Dan Norris [https://github.com/protochron] | Dan “The Man” Norris is well known in the underground street-swimming circuit. Last year he tied Michael Phelps in the Santa Monica Sewer 120 meter medley. He would have won if not for stopping to create the DigitalOcean driver for libStorage.
Alexey Morlang [https://github.com/alexey-mr] | As a third-chair oboe player in the Moscow orchestra it is surprising that Alexey still finds time to contribute to the project, but coming from a long line of oboligarchs (oboe playing oligarchs), it’s just in his nature. As is creating storage drivers. That, and, well, playing the oboe.
Andrey Pavlov [https://github.com/Andrey-mp] | There is no Andrey. You have not met him. He does not exist. Don’t look behind you. He is not there. He is writing storage drivers. Then just like that, he’s vanished.
Lax Kota [https://github.com/Lax77] | Lax is a rock star in the Slack channel, helping others by answering their questions before the project’s developers can take a stab. We do not want to upset him. It’s rumored he beats those who upset him in order to provide inspiration for his true passion – corporal poetry. Every punch thrown is another verse towards his masterpiece.
Jack Huang [https://github.com/jack-fittedcloud] | Jack is not his job. Jack is not the amount of money he has in the bank. Jack is not the car he drives. Jack is not the clothes he wears. Jack is a supernova, accelerating at the speed of light beyond the bounds of quantifiable space and time. Jack is not the stuff above. Jack is not the stuff below. Jack is not the stuff in between. Jack is not the empty void. Jack. just. is.

Version 0.7.0 (2017/01/23)

This feature release includes support for libStorage 0.4.0 and the Ceph RBD
storage platform.

Enhancements

	libStorage 0.4.0 [https://github.com/codedellemc/libstorage/releases/tag/v0.4.0]

	Ceph/RBD storage platform (#347 [https://github.com/codedellemc/libstorage/pull/347])

Bug Fixes

	Prevent unnecessary removal of directory by FlexREX (#699 [https://github.com/codedellemc/rexray/pull/699])

	Update volume attach to check for --force flag (#696 [https://github.com/codedellemc/rexray/pull/696])

	Fix installer to correctly parse new Bintray HTML (#687 [https://github.com/codedellemc/rexray/pull/687])

Version 0.6.4 (2017/01/05)

This release includes the new script manager and FlexVol REX-Ray plug-in.

Enhancements

	libStorage 0.3.8 [https://github.com/codedellemc/libstorage/releases/tag/v0.3.8]

	Script manager (#669 [https://github.com/codedellemc/rexray/pull/669])

	FlexVol plug-in for Kubernetes (#641 [https://github.com/codedellemc/rexray/pull/641])

Bug Fixes

	Panic on $ rexray-client volume mount (#673 [https://github.com/codedellemc/rexray/pull/673])

Version 0.6.3 (2016/12/07)

This release includes the ability to specify a custom encryption key when
creating volumes and makes the volume attach command idempotent.

Enhancements

	libStorage 0.3.5 [https://github.com/codedellemc/libstorage/releases/tag/v0.3.5]

	Support for creating encrypted volumes (#649 [https://github.com/codedellemc/rexray/pull/649], #652 [https://github.com/codedellemc/rexray/pull/652])

	Idempotent volume attach command (#651 [https://github.com/codedellemc/rexray/pull/651])

Bug Fixes

	Fix volume status for detach op (#654 [https://github.com/codedellemc/rexray/pull/654])

Version 0.6.2 (2016/12/05)

While a patch release, this new version includes some much-requested features
and updates.

Enhancements

	libStorage 0.3.4 [https://github.com/codedellemc/libstorage/pull/351]

	Auto-detect running service (#642 [https://github.com/codedellemc/rexray/pull/642])

	Prettier error messages (#645 [https://github.com/codedellemc/rexray/pull/645])

Bug Fixes

	Graceful exit with SystemD (#644 [https://github.com/codedellemc/rexray/pull/644])

Version 0.6.1 (2016/12/01)

This release includes some minor fixes as well as a new and improved version of
the volume ls command.

Enhancements

	libStorage 0.3.3 [https://github.com/codedellemc/libstorage/pull/348]

	Enhanced volume ls command (#634 [https://github.com/codedellemc/rexray/pull/634])

Bug Fixes

	EFS Mounting Issues (#609 [https://github.com/codedellemc/rexray/pull/609])

	VirtualBox Attach Issues (#610 [https://github.com/codedellemc/rexray/pull/610])

	Installer upgrade fix (#637 [https://github.com/codedellemc/rexray/pull/637])

	Build deployment fix (#638 [https://github.com/codedellemc/rexray/pull/638])

Version 0.6.0 (2016/10/20)

This release reintroduces the Elastic Block Storage (EBS) driver, formerly known
as the EC2 driver. All vestigial EC2 configuration properties are still
supported.

Enhancements

	libStorage 0.3.0 (#docs [http://libstorage.readthedocs.io/en/v0.3.0])

	Amazon Elastic Block Storage (EBS) Support (#522 [https://github.com/codedellemc/rexray/issues/522])

	New CLI Output (#579 [https://github.com/codedellemc/rexray/issues/579], #603 [https://github.com/codedellemc/rexray/issues/603], #606 [https://github.com/codedellemc/rexray/issues/606])

	Support for ScaleIO 2.0.1 (#599 [https://github.com/codedellemc/rexray/issues/599])

Bug Fixes

	Handle phantom mounts for EBS (formerly EC2) (#410 [https://github.com/codedellemc/rexray/issues/410])

Version 0.5.1 (2016/09/14)

This is a minor release, but includes a few important patches.

Enhancements

	libStorage 0.2.1 (#docs [http://libstorage.readthedocs.io/en/v0.2.1])

	ScaleIO 2.0.0.2 Support (#555 [https://github.com/codedellemc/rexray/issues/555])

Bug Fixes

	EFS Volume / Tag Creation Bug (#261 [https://github.com/codedellemc/libstorage/issues/261])

Version 0.5.0 (2016/09/07)

Beginning with this release, REX-Ray’s versions will increment the MINOR
component with the introduction of a new storage driver via libStorage in
concert with the guidelines [http://semver.org] set forth by semantic
versioning.

New Features

	Amazon Elastic File System (EFS) Support (#525 [https://github.com/codedellemc/rexray/issues/525])

Enhancements

	Support for Go 1.7 (#541 [https://github.com/codedellemc/rexray/issues/541])

	Enhanced Isilon Support (#520 [https://github.com/codedellemc/rexray/issues/520], #521 [https://github.com/codedellemc/rexray/issues/521])

Thank You

Name | Blame——-|——
Chris Duchesne [https://github.com/cduchesne] | Chris not only took on the role of project manager for libStorage and REX-Ray, he still provides ongoing test plan execution and release validation. Thank you Chris!
Kenny Cole [https://github.com/kacole2] | Kenny’s tireless effort to support users and triage submitted issues is such a cornerstone to libStorage and REX-Ray that I’m not sure what this project would do without him!
Martin Hrabovcin [https://github.com/mhrabovcin] | Martin, along with Kasisnu, definitely win the “Community Members of the Month” award! Their hard work and dedication resulted in the introduction of the Amazon EFS storage driver. Thank you Martin & Kasisnu!
Kasisnu Singh [https://github.com/kasisnu] | Have I mentioned we have the best community around? Seriously, thank you again Kasisnu! Your work, along with Martin’s, is a milestone in the growth of libStorage and REX-Ray.

Version 0.4.2 (2016/07/12)

This minor update represents a major performance boost for REX-Ray.
Operations that use to take up to minutes now take seconds or less. The memory
footprint has been reduced from the magnitude of phenomenal cosmic powers to
the size of an itty bitty living space!

Enhancements

	libStorage 0.1.5 (#TBA [https://github.com/codedellemc/rexray/issues/TBA])

	Improved volume path caching (#500 [https://github.com/codedellemc/rexray/issues/500])

Version 0.4.1 (2016/07/08)

Although a minor release, 0.4.1 provides some meaningful and useful enhancements
and fixes, further strengthening the foundation of the REX-Ray platform.

Enhancements

	Improved build process (#474 [https://github.com/codedellemc/rexray/issues/474], #492 [https://github.com/codedellemc/rexray/issues/492])

	libStorage [http://libstorage.readthedocs.io] 0.1.4 (#493 [https://github.com/codedellemc/rexray/issues/493])

	Removed Docker spec file (#486 [https://github.com/codedellemc/rexray/issues/486])

	Improved REX-Ray 0.3.3 Config Backwards Compatibility (#481 [https://github.com/codedellemc/rexray/issues/481])

	Improved install script (#439 [https://github.com/codedellemc/rexray/issues/439], #495 [https://github.com/codedellemc/rexray/issues/495])

Bug Fixes

	Fixed input validation bug when creating volume sans name (#478 [https://github.com/codedellemc/rexray/issues/478])

Version 0.4.0 (2016/06/20)

REX-Ray 0.4.0 introduces centralized configuration and control along with
a new client/server architecture – features made possible by
libStorage [http://libstorage.readthedocs.io]. Users are no longer
required to configure storage drivers or store privileged information on all
systems running the REX-Ray client. The new client delegates storage-platform
related operations to a remote, libStorage-compatible server such as REX-Ray
or Poly [https://github.com/codedellemc/polly].

Please note that the initial release of REX-Ray 0.4 includes support for only
the following storage platforms:

	ScaleIO

	VirtualBox

Support for the full compliment of drivers present in earlier versions of
REX-Ray will be reintroduced over the course of several, incremental updates,
beginning with 0.4.1.

New Features

	Distributed architecture (#399 [https://github.com/codedellemc/rexray/issues/399], #401 [https://github.com/codedellemc/rexray/issues/401], #411 [https://github.com/codedellemc/rexray/issues/411], #417 [https://github.com/codedellemc/rexray/issues/417], #418 [https://github.com/codedellemc/rexray/issues/418], #419 [https://github.com/codedellemc/rexray/issues/419], #420 [https://github.com/codedellemc/rexray/issues/420], #423 [https://github.com/codedellemc/rexray/issues/423])

	Volume locking mechanism (#171 [https://github.com/codedellemc/rexray/issues/171])

	Volume creation with initial data (#169 [https://github.com/codedellemc/rexray/issues/169])

Enhancements

	Improved storage driver logging (#396 [https://github.com/codedellemc/rexray/issues/396])

	Docker mount path (#403 [https://github.com/codedellemc/rexray/issues/403])

Bug Fixes

	Fixed issue with install script (#409 [https://github.com/codedellemc/rexray/issues/409])

	Fixed volume ls filter (#400 [https://github.com/codedellemc/rexray/issues/400])

	Fixed panic during access attempt of offline REX-Ray daemon (#148 [https://github.com/codedellemc/rexray/issues/148])

Thank You

Yes, the author is so lazy as to blatantly
copy [http://libstorage.readthedocs.io/en/stable/about/release-notes/#version-011-20160610]
this section. So sue me :)

Name | Blame——-|——
Clint Kitson [https://github.com/clintonskitson] | His vision come to fruition. That’s his vision, thus please assign all bugs to Clint :)
Vladimir Vivien [https://github.com/vladimirvivien] | A nascent player, Vlad had to hit the ground running and has been a key contributor
Kenny Coleman [https://github.com/kacole2] | While some come close, none are comparable to Kenny’s handlebar
Jonas Rosland [https://github.com/jonasrosland] | Always good for a sanity check and keeping things on the straight and narrow
Steph Carlson [https://github.com/stephcarlson] | Steph keeps the convention train chugging along...
Amanda Katona [https://github.com/amandakatona] | And Amanda is the one keeping the locomotive from going off the rails
Drew Smith [https://github.com/mux23] | Drew is always ready to lend a hand, no matter the problem
Chris Duchesne [https://github.com/cduchesne] | His short time with the team is in complete opposition to the value he has added to this project
David vonThenen [https://github.com/dvonthenen] | David has been a go-to guy for debugging the most difficult of issues
Steve Wong [https://github.com/cantbewong] | Steve stays on top of the things and keeps use cases in sync with industry needs
Travis Rhoden [https://github.com/codenrhoden] | Another keen mind, Travis is also a great font of technical know-how
Peter Blum [https://github.com/oskoss] | Absent Peter, the EMC World demo would not have been ready
Megan Hyland [https://github.com/meganmurawski] | And absent Megan, Peter’s work would only have taken things halfway there
Eugene Chupriyanov [https://github.com/echupriyanov] | For helping with the EC2 planning
Matt Farina [https://github.com/mattfarina] | Without Glide, it all comes crashing down
Josh Bernstein | The shadowy figure behind the curtain...

Version 0.3.3 (2016/04/21)

New Features

	ScaleIO v2 support (#355 [https://github.com/codedellemc/rexray/issues/355])

	EC2 Tags added to Volumes & Snapshots (#314 [https://github.com/codedellemc/rexray/issues/314])

Enhancements

	Use of official Amazon EC2 SDK (#359 [https://github.com/codedellemc/rexray/issues/359])

	Added a disable feature for create/remove volume (#366 [https://github.com/codedellemc/rexray/issues/366])

	Added ScaleIO troubleshooting information (#367 [https://github.com/codedellemc/rexray/issues/367])

Bug Fixes

	Fixes URLs for documentation when viewed via Github (#337 [https://github.com/codedellemc/rexray/issues/337])

	Fixes logging bug on Ubuntu 14.04 (#377 [https://github.com/codedellemc/rexray/issues/377])

	Fixes module start timeout error (#376 [https://github.com/codedellemc/rexray/issues/376])

	Fixes ScaleIO authentication loop bug (#375 [https://github.com/codedellemc/rexray/issues/375])

Thank You

	Philipp Franke [https://github.com/philippfranke]

	Eugene Chupriyanov [https://github.com/echupriyanov]

	Peter Blum [https://github.com/oskoss]

	Megan Hyland [https://github.com/meganmurawski]

Version 0.3.2 (2016-03-04)

New Features

	Support for Docker 1.10 and Volume Plugin Interface 1.2 (#273 [https://github.com/codedellemc/rexray/issues/273])

	Stale PID File Prevents Service Start (#258 [https://github.com/codedellemc/rexray/issues/258])

	Module/Personality Support (#275 [https://github.com/codedellemc/rexray/issues/275])

	Isilon Preemption (#231 [https://github.com/codedellemc/rexray/issues/231])

	Isilon Snapshots (#260 [https://github.com/codedellemc/rexray/issues/260])

	boot2Docker Support (#263 [https://github.com/codedellemc/rexray/issues/263])

	ScaleIO Dynamic Storage Pool Support (#267 [https://github.com/codedellemc/rexray/issues/267])

Enhancements

	Improved installation documentation (#331 [https://github.com/codedellemc/rexray/issues/331])

	ScaleIO volume name limitation (#304 [https://github.com/codedellemc/rexray/issues/304])

	Docker cache volumes for path operations (#306 [https://github.com/codedellemc/rexray/issues/306])

	Config file validation (#312 [https://github.com/codedellemc/rexray/pull/312])

	Better logging (#296 [https://github.com/codedellemc/rexray/pull/296])

	Documentation Updates (#285 [https://github.com/codedellemc/rexray/issues/285])

Bug Fixes

	Fixes issue with daemon process getting cleaned as part of SystemD Cgroup (#327 [https://github.com/codedellemc/rexray/issues/327])

	Fixes regression in 0.3.2 RC3/RC4 resulting in no log file (#319 [https://github.com/codedellemc/rexray/issues/319])

	Fixes no volumes returned on empty list (#322 [https://github.com/codedellemc/rexray/issues/322])

	Fixes “Unsupported FS” when mounting/unmounting with EC2 (#321 [https://github.com/codedellemc/rexray/issues/321])

	ScaleIO re-authentication issue (#303 [https://github.com/codedellemc/rexray/issues/303])

	Docker XtremIO create volume issue (#307 [https://github.com/codedellemc/rexray/issues/307])

	Service status is reported correctly (#310 [https://github.com/codedellemc/rexray/pull/310])

Updates

	Go 1.6 (#308 [https://github.com/codedellemc/rexray/pull/308])

Thank You

	Dan Forrest

	Kapil Jain

	Alex Kamalov

Version 0.3.1 (2015-12-30)

New Features

	Support for VirtualBox (#209 [https://github.com/codedellemc/rexray/issues/209])

	Added Developer’s Guide (#226 [https://github.com/codedellemc/rexray/issues/226])

Enhancements

	Mount/Unmount Accounting (#212 [https://github.com/codedellemc/rexray/issues/212])

	Support for Sub-Path Volume Mounts / Permissions (#215 [https://github.com/codedellemc/rexray/issues/215])

Milestone Issues

This release also includes many other small enhancements and bug fixes. For a
complete list click here [https://github.com/codedellemc/rexray/pulls?q=is%3Apr+is%3Aclosed+milestone%3A0.3.1].

Downloads

Click here [https://dl.bintray.com/emccode/rexray/stable/0.3.1/] for the 0.3.1
binaries.

Version 0.3.0 (2015-12-08)

New Features

	Pre-Emption support (#190 [https://github.com/codedellemc/rexray/issues/190])

	Support for VMAX (#197 [https://github.com/codedellemc/rexray/issues/197])

	Support for Isilon (#198 [https://github.com/codedellemc/rexray/issues/198])

	Support for Google Compute Engine (GCE) (#194 [https://github.com/codedellemc/rexray/issues/194])

Enhancements

	Added driver example configurations (#201 [https://github.com/codedellemc/rexray/issues/201])

	New configuration file format (#188 [https://github.com/codedellemc/rexray/issues/188])

Tweaks

	Chopped flags --rexrayLogLevel becomes logLevel (#196 [https://github.com/codedellemc/rexray/issues/196])

Pre-Emption Support

Pre-Emption is an important feature when using persistent volumes and container
schedulers. Without pre-emption, the default behavior of the storage drivers is
to deny the attaching operation if the volume is already mounted elsewhere.If it is desired that a host should be able to pre-empt from other hosts, then
this feature can be used to enable any host to pre-empt from another.

Milestone Issues

This release also includes many other small enhancements and bug fixes. For a
complete list click here [https://github.com/codedellemc/rexray/pulls?q=is%3Apr+is%3Aclosed+milestone%3A0.3.0].

Downloads

Click here [https://dl.bintray.com/emccode/rexray/stable/0.3.0/] for the 0.3.0
binaries.

Version 0.2.1 (2015-10-27)

REX-Ray release 0.2.1 includes OpenStack support, vastly improved documentation,
and continued foundation changes for future features.

New Features

	Support for OpenStack (#111 [https://github.com/codedellemc/rexray/issues/111])

	Create volume from volume using existing settings (#129 [https://github.com/codedellemc/rexray/issues/129])

Enhancements

	A+ GoReport Card [http://goreportcard.com/report/emccode/rexray]

	A+ Code Coverage [https://coveralls.io/github/emccode/rexray?branch=master]

	GoDoc Support [https://godoc.org/github.com/codedellemc/rexray]

	Ability to load REX-Ray as an independent storage platform (#127 [https://github.com/codedellemc/rexray/issues/127])

	New documentation at http://rexray.readthedocs.org (#145 [https://github.com/codedellemc/rexray/issues/145])

	More foundation updates

Tweaks

	Command aliases for get and delete - ls and rm (#107 [https://github.com/codedellemc/rexray/issues/107])

Version 0.2.0 (2015-09-30)

Installation, SysV, SystemD Support

REX-Ray now includes built-in support for installing itself as a service on
Linux distributions that support either SystemV or SystemD initialization
systems. This feature has been tested successfully on both CentOS 7 Minimal
(SystemD) and Ubuntu 14.04 Server (SystemV) distributions.

To install REX-Ray on a supported Linux distribution, all that is required
now is to download the binary and execute:

sudo ./rexray service install

What does that do? In short the above command will determine if the Linux
distribution uses systemctl, update-rc.d, or chkconfig to manage system
services. After that the following steps occur:

	The path /opt/rexray is created and chowned to root:root with permissions
set to 0755.

	The binary is copied to /opt/rexray/rexray and chowned to root:root with
permissions set to 4755. This is important, because this means that any
non-privileged user can execute the rexray binary as root without requiring
sudo privileges. For more information on this feature, please read about the
Linux kernel’s super-user ID (SUID) bit [http://www.tldp.org/HOWTO/Security-HOWTO/file-security.html].

Because the REX-Ray binary can now be executed with root privileges by
non-root users, the binary can be used by non-root users to easily attach
and mount external storage.

	The directory /etc/rexray is created and chowned to root:root.

The next steps depends on the type of Linux distribution. However, it’s
important to know that the new version of the REX-Ray binary now supports
managing its own PID (at /var/run/rexray.pid) when run as a service as well
as supports the standard SysV control commands such as start, stop,
status, and restart.

For SysV Linux distributions that use chkconfig or update-rc.d, a symlink
of the REX-Ray binary is created in /etc/init.d and then either
chkconfig rexray on or update-rc.d rexray defaults is executed.

Modern Linux distributions have moved to SystemD for controlling services.
If the systemctl command is detected when installing REX-Ray then a unit
file is written to /etc/systemd/system/rexray.service with the following
contents:

[Unit]
Description=rexray
Before=docker.service

[Service]
EnvironmentFile=/etc/rexray/rexray.env
ExecStart=/usr/local/bin/rexray start -f
ExecReload=/bin/kill -HUP $MAINPID
KillMode=process

[Install]
WantedBy=docker.service

The REX-Ray service is not started immediately upon installation. The install
command completes by informing the users that they should visit the
REX-Ray website [http://github.com/codedellemc/rexray] for information on how to
configure REX-Ray’s storage drivers. The text to the users also explains how
to start the REX-Ray service once it’s configured using the service command
particular to the Linux distribution.

Single Service

This release also removes the need for REX-Ray to be configured as multiple
service instances in order to provide multiple end-points to such consumers
such as Docker. REX-Ray’s backend now supports an internal, modular design
which enables it to host multiple module instances of any module, such as the
DockerVolumeDriverModule. In fact, one of the default, included modules is...

Admin Module & HTTP JSON API

The AdminModule enables an HTTP JSON API for managing REX-Ray’s module system
as well as provides a UI to view the currently running modules. Simply start
the REX-Ray server and then visit the URL http://localhost:7979 in your favorite
browser to see what’s loaded. Or you can access either of the currently
supported REST URLs:

http://localhost:7979/r/module/types

and

http://localhost:7979/r/module/instances

Actually, those aren’t the only two URLs, but the others are for internal
users as of this point. However, the source is open, so... :)

If you want to know what modules are available by using the CLI, after starting
the REX-Ray service simply type:

[0]akutz@poppy:rexray$ rexray service module types
[
 {
 "id": 2,
 "name": "DockerVolumeDriverModule",
 "addresses": [
 "unix:///run/docker/plugins/rexray.sock",
 "tcp://:7980"
]
 },
 {
 "id": 1,
 "name": "AdminModule",
 "addresses": [
 "tcp://:7979"
]
 }
]
[0]akutz@poppy:rexray$

To get a list of the running modules you would type:

[0]akutz@poppy:rexray$ rexray service module instance get
[
 {
 "id": 1,
 "typeId": 1,
 "name": "AdminModule",
 "address": "tcp://:7979",
 "description": "The REX-Ray admin module",
 "started": true
 },
 {
 "id": 2,
 "typeId": 2,
 "name": "DockerVolumeDriverModule",
 "address": "unix:///run/docker/plugins/rexray.sock",
 "description": "The REX-Ray Docker VolumeDriver module",
 "started": true
 },
 {
 "id": 3,
 "typeId": 2,
 "name": "DockerVolumeDriverModule",
 "address": "tcp://:7980",
 "description": "The REX-Ray Docker VolumeDriver module",
 "started": true
 }
]
[0]akutz@poppy:rexray$

Hmmm, you know, the REX-Ray CLI looks a little different in the above examples,
doesn’t it? About that...

Command Line Interface

The CLI has also been enhanced to present a more simplified view up front to
users. The commands are now categorized into logical groups:

[0]akutz@pax:~$ rexray
REX-Ray:
 A guest-based storage introspection tool that enables local
 visibility and management from cloud and storage platforms.

Usage:
 rexray [flags]
 rexray [command]

Available Commands:
 volume The volume manager
 snapshot The snapshot manager
 device The device manager
 adapter The adapter manager
 service The service controller
 version Print the version
 help Help about any command

Global Flags:
 -c, --config="/Users/akutz/.rexray/config.yaml": The REX-Ray configuration file
 -?, --help[=false]: Help for rexray
 -h, --host="tcp://:7979": The REX-Ray service address
 -l, --logLevel="info": The log level (panic, fatal, error, warn, info, debug)
 -v, --verbose[=false]: Print verbose help information

Use "rexray [command] --help" for more information about a command.

Travis-CI Support

REX-Ray now supports Travis-CI builds either from the primary REX-Ray repository
or via a fork. All builds should be executed through the Makefile, which is a
Travis-CI default. For the Travis-CI settings please be sure to set the
environment variable GO15VENDOREXPERIMENT to 1.

Usage

Report status, Initiate storage operations

Overview

This page reviews how to use the REX-Ray CLI.

$ rexray [options] commands [flags] [args]

Name | Description
—–|————
[options] | REX-Ray’s optional, global options, such as log level (-l|--logLevel)
commands | The commands to execute, such as rexray volume ls or rexray volume create
[flags] | The flags associated with the command. Some flags may be optional, others required. Some flags may be simple switches where other flags require arguments.
[args] | The remaining tokens on the command line. These may be arguments to the command. For example, rexray volume create Vol1 Vol2 has two arguments, Vol1 and Vol2, and are the names of the volume to create. A command’s arguments varies by command.

Getting Help

To print the online help for any command, use the -?|--help flag
in conjunction with the command in question.

$ rexray [command] -?

The following example illustrates how to print the online help
for the rexray volume ls command:

$ rexray volume ls -?
List volumes

Usage:
 rexray volume ls [flags]

Aliases:
 ls, l, list, get, inspect

Examples:
rexray volume ls [OPTIONS] [VOLUME...]

Flags:
 --attached A flag that indicates only volumes attached to this host should be returned
 --available A flag that indicates only available volumes should be returned
 --path A flag that indicates only volumes attached to this host should be returned, along with their path info

Global Flags:
 -c, --config string The path to a custom REX-Ray configuration file
 -n, --dryRun Show what action(s) will occur, but do not execute them
 -f, --format string The output format (tmpl, json, jsonp) (default "tmpl")
 -?, --help Help about the current command
 -h, --host string The libStorage host.
 -l, --logLevel string The log level (error, warn, info, debug) (default "warn")
 -q, --quiet Suppress table headers
 -s, --service string The libStorage service.
 --template string The Go template to use when --format is set to 'tmpl'
 --templateTabs Set to true to use a Go tab writer with the output template (default true)
 -v, --verbose Print verbose help information

Global Options

As mentioned in the Overview, REX-Ray has several, global options:

Option | Long Form | Description
——-|———–|————
-? | --help | Prints the online help for the current command.
-c | --config | A path to a custom configuration file. This file will be merged into the default user and global configuration files if they exist.
-h | --host | The libStorage host used to process the remote parts of the command’s workflow.
-l | --logLevel | The log level. Options include error, warn, info, and debug. The default log level is warn.
-s | --service | The libStorage service used to process the remote parts of the command’s workflow.
-v | --verbose | Prints all of the available flags, not just the basic ones.

Commands

The following commands are available to use with the REX-Ray CLI:

Command | Description
——–|————
env | Prints the effective, current configuration as a list of environment variables.
token | The token command is used to create and validate authentication tokens used by libStorage.
version | Prints the REX-Ray and libStorage version information for the executing binary.
volume | The volume manager used to create, remove, attach, detach, mount, and unmount volumes.

Examples

This section illustrates several, common examples for using the REX-Ray CLI.

Print the version

This example shows how to print REX-Ray’s version:

$ rexray version
REX-Ray

Binary: /usr/bin/rexray
Flavor: client+agent+controller
SemVer: 0.8.1
OsArch: Linux-x86_64
Branch: v0.8.1
Commit: 30e9082dd9917f0d218ca981f886d701110ce5f5
Formed: Sat, 25 Feb 2017 03:00:28 UTC

libStorage

SemVer: 0.5.1
OsArch: Linux-x86_64
Branch: v0.8.1
Commit: 35c7b6d96d5f17aa0c0379924615ae22c1ad3d45
Formed: Sat, 25 Feb 2017 02:59:00 UTC

Start service

The below example describes how to start REX-Ray as a service:

$ sudo rexray service start
Starting REX-Ray...SUCCESS!

 The REX-Ray daemon is now running at PID 1455. To
 shutdown the daemon execute the following command:

 sudo /usr/bin/rexray stop

List volumes

This small, but important example highlights how to use REX-Ray to
print a list of volumes:

$ rexray volume ls
ID Name Status Size
vol-03ff12d1be6e8a65d attached 8
vol-549bd6d4 unavailable 20
vol-867e4906 mesos1-sw available 16

Status	Description
—	—
attached	volume is currently attached to this instance
unavailable	volume is in use attached to another (different) instance
available	volume is not currently attached to an instance

Create a volume

REX-Ray’s volume manager, in addition to listing volumes, can also create
them:

!!! note “note”

The example below uses the `--size` flag. For a full list of the
`volume create` command's flags, please use `rexray volume create -?`.

!!! note “note”

REX-Ray passes these options to
[libStorage](http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/)
which in turn invokes the API of a storage provider. The settings range,
and constraints, are generally determined by the storage platform, and
can have cross-option interactions (e.g. specifying a high IOPS settings,
reduces the allowed range of size). Cloud providers have been known
to change constraints over time and across regions. Please consult the
documentation associated with the storage provider should you
encounter issues creating a volume.

$ rexray volume create mysqldata --size 16
ID Name Status Size
vol-0714d4b348da9e537 mysqldata available 16

Mount a volume

After a volume has been created, the rexray volume mount command
can be used to both attach and mount it to the current host:

$ rexray volume mount mysqldata
ID Name Status Size Path
vol-0762d4b318dade537 mysqldata attached 16 /var/lib/libstorage/volumes/mysqldata/data

Inspect a volume

The REX-Ray CLI can also inspect and collect additional, detailed
information about a volume:

$ rexray --format=jsonp volume ls mysqldata
[
 {
 "attachmentState": 3,
 "availabilityZone": "us-west-2c",
 "name": "mysqldata",
 "size": 1,
 "status": "available",
 "id": "vol-0ca6d0b4577b3d1b7",
 "type": "standard"
 }

Unmount a volume

Once a volume is no longer needed, the rexray volume unmount
command will unmount the volume:

$ sudo rexray volume unmount mysqldata
ID Name Status Size
vol-0764d4b348da9e537 mysqldata available 16

Remove a volume

If the volume has completely served its purpose and it’s time
for its bits to be recycled, use the remove command to completely
delete the volume:

$ rexray volume rm mysqldata
mysqldata

Configuring REX-Ray

Tweak this, turn that, peek behind the curtain...

Overview

This page reviews how to configure REX-Ray to suit any environment, beginning
with the most common use cases, exploring recommended guidelines, and
finally, delving into the details of more advanced settings.

Basic Configuration

This section outlines the two most common configuration scenarios encountered
by REX-Ray’s users:

	REX-Ray as a stand-alone CLI tool

	REX-Ray as a service

!!! note “note”

Please remember to replace the placeholders in the following examples
with values valid for the systems on which the examples are executed.

The example below specifies the `volumePath` property as
`$HOME/VirtualBox/Volumes`. While the text `$HOME` will be replaced with
the actual value for that environment variable at runtime, the path may
still be invalid. The `volumePath` property should reflect a path on the
system on which the VirtualBox server is running, and that is not always
the same system on which the `libStorage` server is running.

So please, make sure to update the `volumePath` property for the VirtualBox
driver to a path valid on the system on which the VirtualBox server is
running.

The same goes for VirtualBox property `endpoint` as the VirtualBox
web service is not always available at `10.0.2.2:18083`.

Stand-alone CLI Mode

It is possible to use REX-Ray directly from the command line without any
configuration files. The following example uses REX-Ray to list the storage
volumes available to a Linux VM hosted by VirtualBox:

!!! note “note”

The examples below assume that the VirtualBox web server is running on the
host OS with authentication disabled and accessible to the guest OS. For
more information please refer to the VirtualBox storage driver
[documentation](http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/#virtualbox).

$ rexray volume --service virtualbox ls
ID Name Status Size
1b819454-a280-4cff-aff5-141f4e8fd154 libStorage.vmdk attached 16

In addition to listing volumes, the REX-Ray CLI can be used to create and
remove them as well as manage volume snapshots. For an end-to-end example of
volume creation, see Hello REX-Ray.

Embedded Server Mode

When operating as a stand-alone CLI, REX-Ray actually loads an embedded
libStorage server for the duration of the CLI process and is accessible by
only the process that hosts it. This is known as Embedded Server Mode.

While commonly used when executing one-off commands with REX-Ray as a
stand-alone CLI tool, Embedded Server Mode can be utilized when configuring
REX-Ray to advertise a static libStorage server as well. The following
qualifications must be met for Embedded Server Mode to be activated:

	The property libstorage.host must not be defined via configuration file,
environment variable, or CLI flag

	If the libstorage.host property is defined then the property
libstorage.embedded can be set to true to explicitly activate
Embedded Server Mode.

	If the libstorage.host property is set and libtorage.embedded is
set to true, Embedded Server Mode will still only activate if the address
specified by libstorage.host (whether a UNIX socket or TCP port) is
not currently in use.

Auto Service Mode

The Stand-alone CLI Mode example also uses the
--service flag. This flag’s argument sets the libstorage.service property,
which has a special meaning inside of REX-Ray – it serves to enabled
Auto Service Mode.

Services represent unique libStorage endpoints that are available to libStorage
clients. Each service is associated with a storage driver. Thus
Auto Service Mode minimizes configuration for simple environments.

The value of the libstorage.service property is used to create a default
service configured with a storage driver. This special mode is only activated
if all of the following conditions are met:

	The libstorage.service property is set via:
	The CLI flags -s|--service or --libstorageService

	The environment variable LIBSTORAGE_SERVICE

	The configuration file property libstorage.service

	The libstorage.host property is not set. This property can be set via:
	The CLI flags -h|--host or --libstorageHost

	The environment variable LIBSTORAGE_HOST

	The configuration file property libstorage.host

	The configuration property libstorage.server.services must not be set.
This property is only configurable via a configuration file.

Because the above example met the auto service mode conditions, REX-Ray
created a service named virtualbox configured to use the virtualbox driver.
This service runs on the libStorage server embedded inside of REX-Ray and is
accessible only by the executing CLI process for the duration of said process.
When used in this manner, the service name must also be a valid driver name.

Service Mode

REX-Ray can also run as a persistent service that advertises both
Docker Volume Plug-in [https://docs.docker.com/engine/extend/plugins_volume/]
and libStorage [http://libstorage.readthedocs.io/en/stable/] endpoints.

Docker Volume Plug-in

This section refers to the only operational mode that REX-Ray supported in
versions 0.3.3 and prior. A UNIX socket is created by REX-Ray that serves as a
Docker Volume Plugin compliant API endpoint. Docker is able to leverage this
endpoint to deliver on-demand, persistent storage to containers.

The following is a simple example of a configuration file that should be
located at /etc/rexray/config.yml. This file can be used to configure the
same options that were specified in the previous CLI example. Please see the
advanced section for a complete list of
configuration options.

libstorage:
 service: virtualbox
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

Once the configuration file is in place, rexray service start can be used to
start the service. Sometimes it is also useful to add -l debug to enable
more verbose logging. Additionally, it’s also occasionally beneficial to
start the service in the foreground with the -f flag.

$ rexray start

Starting REX-Ray...SUCCESS!

 The REX-Ray daemon is now running at PID 15724. To
 shutdown the daemon execute the following command:

 sudo /usr/bin/rexray stop

At this point requests can now be made to the default Docker Volume Plugin
and Volume Driver advertised by the UNIX socket rexray at
/run/docker/plugins/rexray.sock. More details on configuring the Docker
Volume Plug-in are available on the Schedulers page.

libStorage Server and Client

In addition to Embedded Server Mode, REX-Ray can also
expose the libStorage API statically. This enables REX-Ray to serve a
libStorage server and perform only a storage abstraction role.

If the desire is to establish a centralized REX-Ray server that is called
on from remote REX-Ray instances then the following example will be useful.
The first configuration is for running REX-Ray purely as a libStorage server.
The second defines how one would would use one or more REX-Ray instances in a
libStorage client role.

The following examples require multiple systems in order to fulfill these
different roles. The Hello REX-Ray section on
the front page has an end-to-end illustration of this use case that leverages
Vagrant to provide and configure the necessary systems.

libStorage Server

The example below illustrates the necessary settings for configuring REX-Ray
as a libStorage server:

rexray:
 modules:
 default-docker:
 disabled: true
libstorage:
 host: tcp://127.0.0.1:7979
 embedded: true
 client:
 type: controller
 server:
 endpoints:
 public:
 address: tcp://:7979
 services:
 virtualbox:
 driver: virtualbox
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

In the above sample, the default Docker module is disabled. This means that
while the REX-Ray service would be running, it would not be available to
Docker on that host.

The libstorage section defines the settings that configure the libStorage
server:

Property | Description
———|————
libstorage.host | Instructs local clients which libStorage endpoint to access
libstorage.embedded | Indicates the libStorage server should be started even though the libstorage.host property is defined
libstorage.client.type | When set to controller this property indicates local clients perform no integration activities
libstorage.server.endpoints | The available libStorage server HTTP endpoints
libstorage.server.services | The configured libStorage services

Start the REX-Ray service with rexray service start.

libStorage Client

On a separate OS instance running REX-Ray, the follow command can be used to
list the instance’s available VirtualBox storage volumes:

$ rexray volume -h tcp://REXRAY_SERVER:7979 -s virtualbox

An alternative to the above CLI flags is to add them as persistent settings
to the /etc/rexray/config.yml configuration file on this instance:

libstorage:
 host: tcp://REXRAY_SERVER:7979
 service: virtualbox

Now the above command can be simplified further:

$ rexray volume

Once more, the REX-Ray service can be started with rexray service start and
the REX-Ray Docker Volume Plug-in endpoint will utilize the remote libStorage
server as its method for communicating with VirtualBox.

Again, a complete end-to-end Vagrant environment for the above example is
available at Hello REX-Ray.

Example sans Modules

Lets review the major sections of the configuration file:

rexray:
 logLevel: warn
libstorage:
 service: virtualbox
 integration:
 volume:
 operations:
 create:
 default:
 size: 1
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

Settings occur in three primary areas:

	rexray

	libstorage

	virtualbox

The rexray section contains all properties specific to REX-Ray. The
YAML property path rexray.logLevel defines the log level for REX-Ray and its
child components. All of the rexray properties are
documented below.

Next, the libstorage section defines the service with which REX-Ray will
communicate via the property libstorage.service. This property also enables
the Auto Service Mode discussed above since this
configuration example does not define a host or services section. For all
information related to libStorage and its properties, please refer to the
libStorage documentation [http://libstorage.readthedocs.io/].

Finally, the virtualbox section configures the VirtualBox driver selected
or loaded by REX-Ray, as indicated via the libstorage.service property. The
libStorage Storage Drivers page has information about the configuration details
of each driver [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers],
including VirtualBox [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/#virtualbox].

TLS Configuration

REX-Ray supports several ways of configuring TLS for secure connection between
a REX-Ray client and a process running REX-Ray as a service. This section
discusses how to configure REX-Ray using the followings:

	YAML files

	Environmental variables

	rexray command arguments

Note: TLS configuration assumes that you are using REX-Ray as a client and server. See
the section on Service Mode for detail on how to run REX-Ray this way.

Before you get started, you will need at your disposal a keypair (certificate
and private key) for the server and a separate keypair for the client both signed by
a CA. You can use tools such as OpenSSL [https://www.openssl.org] or Cloud
Flare’s CFSSL CFSSL [https://cfssl.org/] to generate self-signed certificates for your
setup.

TLS Configuration

REX-Ray supports several ways of configuring TLS for secure connection between
a REX-Ray client and a process running REX-Ray as a service. This section
discusses how to configure REX-Ray using the followings:

	YAML files

	Environmental variables

	rexray command arguments

Note: TLS configuration assumes that you are using REX-Ray as a client and server. See
the section on Service Mode for detail on how to run REX-Ray this way.

Before you get started, you will need at your disposal a keypair (certificate
and private key) for the server and a separate keypair for the client both signed by
a CA. You can use tools such as OpenSSL [https://www.openssl.org] or Cloud
Flare’s CFSSL CFSSL [https://cfssl.org/] to generate self-signed certificates for your
setup.

Secured transport with TLS

This section shows how to setup both client and server for secured communication between
them.

Server configuration

First configure your REX-Ray server process with a configuration similar to the following. Ensure to setup the tls: section to specify the certificate and the private key files for the server.

rexray:
 modules:
 default-docker:
 disabled: true
libstorage:
 embedded: true
 client:
 type: controller
 server:
 endpoints:
 public:
 address: tcp://:7979
 tls:
 certFile: /etc/rexray/certs/server.pem
 keyFile: /etc/rexray/certs/server-key.pem
 services:
 virtualbox:
 driver: virtualbox
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

Client configuration

We also will use a small YAML configuration file for the client to avoid unnecessary typing. The following instructs the REX-Ray client process to connect to the REX-Ray service process using TLS.

libstorage:
 embedded: false
 host: tcp://localhost:7979
 service: virtualbox
 client:
 tls: true

When the client connects to the server. It will fail as shown below:

rexray volume -c ./rexray-config.yaml ls
 Get http://localhost:7979/services: x509: certificate signed by unknown authority
...

The error is telling us that the client attempted to validate the server certificate and
it failed. At this point we can tell REX-Ray client process to ignore that verification step. This
would make the setup no longer secure as shown below.

libstorage:
...
 client:
 tls: insecure

This should only be done in a non-production environment for testing purposes.

The proper way to setup the REX-Ray client for a secure connection is to provide the CA
certificate, which contains signed certificate of known servers. The client configuration below
uses client.tls.trustedCertsFile to specify the CA certificate.

libstorage:
 embedded: false
 host: tcp://localhost:7979
 service: virtualbox
 client:
 tls:
 trustedCertsFile: /etc/rexray/certs/ca.pem

This setup ensures that only servers with signed certificates by the CA are allowed to interact
with the client.

Authenticate client using certificates

A REX-Ray service can be configured to require a properly signed certificate from the client as well.This approach can be used as a way of authenticating client connections coming to the server.
This is done by updating the configuration for both the client and the server processes.

Server configuration

Update the server configuration by adding server.tls.trustedCertsFile to specify the CA certificate
and server.tls.clientCertRequired to force the server to validate the client certificate.

libstorage:
...
 server:
 endpoints:
 public:
 address: tcp://:7979
 tls:
 certFile: /etc/rexray/certs/server.pem
 keyFile: /etc/rexray/certs/server-key.pem
 trustedCertsFile: /etc/rexray/certs/ca.pem
 clientCertRequired: true
...

Client configuration

In this configuration, the client must also provide its own certificate to be allowed to communicate
with the server with client.tls.certFile and client.tls.keyFile.

libstorage:
 embedded: false
 host: tcp://localhost:7979
 service: virtualbox
 client:
 tls:
 certFile: /home/vladimir/certs3/client.pem
 keyFile: /home/vladimir/certs3/client-key.pem
 trustedCertsFile: /home/vladimir/certs3/ca.pem

TLS with Cert Fingerprints

A REX-Ray client can be configured for TLS by providing the fingerprint of the server’s certificate. This
approach is designed to keep configuration on the lighter side, but secure. Rather than setup a full
separate keypair for the client, you can simply extract the fingerprint from the known self-signed server
certificate as a SHA-256 hash:

openssl x509 -in /etc/rexray/certs/server.pem -fingerprint -sha256 -noout
SHA256 Fingerprint=F5:F8:F5:0B:E8:22:5C:35:AF:...:10:48:57:8B:A8:1C:30:E3:47:D1:1C:F5:44:51:39

Next, configure the REX-Ray client to use the fingerprint value as follows:

libstorage:
 embedded: false
 host: tcp://localhost:7979
 service: virtualbox
 client:
 tls: "sha256:F5:F8:F5:0B:E8:22:5C:35:AF:0F:7A:1D:A0:7D:9B:9A:50:10:48:57:8B:A8:1C:30:E3:47:D1:1C:F5:44:51:39"

Notice the sha256: prefix when setting the client configuration attribute client.tls.

Lastly, the server process must be configured with its keypair as follows:

libstorage:
...
 server:
 endpoints:
 public:
 address: tcp://:7979
 tls:
 certFile: /home/vladimir/certs3/server.pem
 keyFile: /home/vladimir/certs3/server-key.pem
...

Logging

The -l|--logLevel option or rexray.logLevel configuration key can be set
to any of the following values to increase or decrease the verbosity of the
information logged to the console or the REX-Ray log file (defaults to
/var/log/rexray/rexray.log).

	panic

	fatal

	error

	warn

	info

	debug

Troubleshooting

The command rexray env can be used to print out the runtime interpretation
of the environment, including configured properties, in order to help diagnose
configuration issues.

$ rexray env | grep DEFAULT | sort -r
REXRAY_MODULES_DEFAULT-DOCKER_TYPE=docker
REXRAY_MODULES_DEFAULT-DOCKER_SPEC=/etc/docker/plugins/rexray.spec
REXRAY_MODULES_DEFAULT-DOCKER_LIBSTORAGE_SERVICE=vfs
REXRAY_MODULES_DEFAULT-DOCKER_HOST=unix:///run/docker/plugins/rexray.sock
REXRAY_MODULES_DEFAULT-DOCKER_DISABLED=false
REXRAY_MODULES_DEFAULT-DOCKER_DESC=The default docker module.
REXRAY_MODULES_DEFAULT-ADMIN_TYPE=admin
REXRAY_MODULES_DEFAULT-ADMIN_HOST=unix:///var/run/rexray/server.sock
REXRAY_MODULES_DEFAULT-ADMIN_DISABLED=false
REXRAY_MODULES_DEFAULT-ADMIN_DESC=The default admin module.
LIBSTORAGE_INTEGRATION_VOLUME_OPERATIONS_CREATE_DEFAULT_TYPE=
LIBSTORAGE_INTEGRATION_VOLUME_OPERATIONS_CREATE_DEFAULT_SIZE=16
LIBSTORAGE_INTEGRATION_VOLUME_OPERATIONS_CREATE_DEFAULT_IOPS=
LIBSTORAGE_INTEGRATION_VOLUME_OPERATIONS_CREATE_DEFAULT_FSTYPE=ext4
LIBSTORAGE_INTEGRATION_VOLUME_OPERATIONS_CREATE_DEFAULT_AVAILABILITYZONE=

Advanced Configuration

The following sections detail every last aspect of how REX-Ray works and can
be configured.

Example with Modules

Modules enable a single REX-Ray instance to present multiple personalities or
volume endpoints, serving hosts that require access to multiple storage
platforms.

Defining Modules

The following example demonstrates a basic configuration that presents two
modules using the VirtualBox driver: default-docker and vb2-module.

rexray:
 logLevel: warn
 modules:
 default-docker:
 type: docker
 desc: The default docker module.
 host: unix:///run/docker/plugins/vb1.sock
 libstorage:
 service: virtualbox
 integration:
 volume:
 operations:
 create:
 default:
 size: 1
 virtualbox:
 volumePath: $HOME/VirtualBox/Volumes
 vb2-module:
 type: docker
 desc: The second docker module.
 host: unix:///run/docker/plugins/vb2.sock
 libstorage:
 service: virtualbox
 integration:
 volume:
 operations:
 create:
 default:
 size: 1
 virtualbox:
 volumePath: $HOME/VirtualBox/Volumes
libstorage:
 service: virtualbox

Whereas the previous example did not use modules and the example above does,
they both begin by defining the root section rexray. Unlike the previous
example, however, the majority of the libstorage section and all of the
virtualbox section are no longer at the root. Instead the section
rexray.modules is defined. The modules key in the rexray section is where
all modules are configured. Each key that is a child of modules represents the
name of a module.

!!! note “note”

Please note that while most of the `libstorage` section has been relocated
as a child of each module, the `libstorage.service` property is still
defined at the root to activate [Auto Service Mode](#auto-service-mode) as
a quick-start method of property configuring the embedded libStorage server.

The above example defines two modules:

	default-module

This is a special module, and it’s always defined, even if not explicitly
listed. In the previous example without modules, the libstorage and
virtualbox sections at the root actually informed the configuration of
the implicit default-docker module. In this example the explicit
declaration of the default-docker module enables several of its
properties to be overridden and given desired values. The Advanced
Configuration section has more information on
Default Modules.

	vb2-module

This is a new, custom module configured almost identically to the
default-module with the exception of a unique host address as defined
by the module’s host key.

Notice that both modules share many of the same properties and values. In fact,
when defining both modules, the top-level libstorage and virtualbox sections
were simply copied into each module as sub-sections. This is perfectly valid
as any configuration path that begins from the root of the REX-Ray
configuration file can be duplicated beginning as a child of a module
definition. This allows global settings to be overridden just for a specific
modules.

As noted, each module shares identical values with the exception of the module’s
name and host. The host is the address used by Docker to communicate with
REX-Ray. The base name of the socket file specified in the address can be
used with docker --volume-driver=. With the current example the value of the
--volume-driver parameter would be either vb1 of vb2.

Modules and Inherited Properties

There is also another way to write the previous example while reducing the
number of repeated, identical properties shared by two modules.

rexray:
 logLevel: warn
 modules:
 default-docker:
 host: unix:///run/docker/plugins/vb1.sock
 libstorage:
 integration:
 volume:
 operations:
 create:
 default:
 size: 1
 vb2:
 type: docker
libstorage:
 service: virtualbox
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

The above example may look strikingly different than the previous one, but it’s
actually the same with just a few tweaks.

While there are still two modules defined, the second one has been renamed from
vb2-module to vb2. The change is a more succinct way to represent the same
intent, and it also provides a nice side-effect. If the host key is omitted
from a Docker module, the value for the host key is automatically generated
using the module’s name. Therefore since there is no host key for the vb2
module, the value will be unix:///run/docker/plugins/vb2.sock.

Additionally, virtualbox sections from each module definition have been
removed and now only a single, global virtualbox section is present at the
root. When accessing properties, a module will first attempt to access a
property defined in the context of the module, but if that fails the property
lookup will resolve against globally defined keys as well.

Finally, the libstorage section has been completely removed from the vb2
module whereas it still remains in the default-docker section. Volume
creation requests without an explicit size value sent to the default-docker
module will result in 1GB volumes whereas the same request sent to the vb2
module will result in 16GB volumes (since 16GB is the default value for the
libstorage.integration.volume.operations.create.default.size property).

Defining Service Endpoints

Multiple libStorage services can be defined in order to leverage several
different combinations of storage provider drivers and their respective
configurations. The following section illustrates how to define two separate
services, one using the ScaleIO driver and one using VirtualBox:

rexray:
 modules:
 default-docker:
 host: unix:///run/docker/plugins/virtualbox.sock
 spec: /etc/docker/plugins/virtualbox.spec
 libstorage:
 service: virtualbox
 scaleio-docker:
 type: docker
 host: unix:///run/docker/plugins/scaleio.sock
 spec: /etc/docker/plugins/scaleio.spec
 libstorage:
 service: scaleio
libstorage:
 server:
 services:
 scaleio:
 driver: scaleio
 virtualbox:
 driver: virtualbox
scaleio:
 endpoint: https://SCALEIO_GATEWAY/api
 insecure: true
 userName: SCALEIO_USER
 password: SCALEIO_PASS
 systemName: SCALEIO_SYSTEM_NAME
 protectionDomainName: SCALEIO_DOMAIN_NAME
 storagePoolName: SCALEIO_STORAG_NAME
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

Once the services have been defined, it is then up to the modules to specify
which service to use. Notice how the default-docker module specifies
the virtualbox service as its libstorage.service. Any requests to the
Docker Volume Plug-in endpoint /run/docker/plugins/virtualbox.sock will
utilize the libStorage service virtualbox on the backend.

Defining a libStorage Server

The following example is very similar to the previous one, but in this instance
there is a centralized REX-Ray server which services requests from many
REX-Ray clients.

rexray:
 modules:
 default-docker:
 disabled: true
libstorage:
 host: tcp://127.0.0.1:7979
 embedded: true
 client:
 type: controller
 server:
 endpoints:
 public:
 address: tcp://:7979
 services:
 scaleio:
 driver: scaleio
 virtualbox:
 driver: virtualbox
scaleio:
 endpoint: https://SCALEIO_GATEWAY/api
 insecure: true
 userName: SCALEIO_USER
 password: SCALEIO_PASS
 systemName: SCALEIO_SYSTEM_NAME
 protectionDomainName: SCALEIO_DOMAIN_NAME
 storagePoolName: SCALEIO_STORAG_NAME
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

One of the larger differences between the above example and the previous one is
the removal of the module definitions. Docker does not communicate with the
central REX-Ray server directly; instead Docker interacts with the REX-Ray
services running on the clients via their Docker Volume Endpoints. The client
REX-Ray instances then send all storage-related requests to the central REX-Ray
server.

Additionally, the above sample configuration introduces a few new properties:

Property | Description
———|————
libstorage.host | Instructs local clients which libStorage endpoint to access
libstorage.embedded | Indicates the libStorage server should be started even though the libstorage.host property is defined
libstorage.client.type | When set to controller this property indicates local clients perform no integration activities
libstorage.server.endpoints | The available libStorage server HTTP endpoints

Defining a libStorage Client

The client configuration is still rather simple. As mentioned in the previous
section, the rexray.modules configuration occurs here. This enables the Docker
engines running on remote instances to communicate with local REX-Ray exposed
Docker Volume endpoints that then handle the storage-related requests via the
centralized REX-Ray server.

rexray:
 modules:
 default-docker:
 host: unix:///run/docker/plugins/virtualbox.sock
 spec: /etc/docker/plugins/virtualbox.spec
 libstorage:
 service: virtualbox
 scaleio-docker:
 type: docker
 host: unix:///run/docker/plugins/scaleio.sock
 spec: /etc/docker/plugins/scaleio.spec
 libstorage:
 service: scaleio
libstorage:
 host: tcp://REXRAY_SERVER:7979

libStorage Configuration

REX-Ray embeds both the libStorage client as well as the libStorage server. For
information on configuring the following, please refer to the
libStorage documentation [http://libstorage.readthedocs.io/en/stable]:

	Volume options [http://libstorage.readthedocs.io/en/stable/user-guide/config/#volume-configuration]
such as preemption, disabling operations, etc.

	Fine-tuning logging [http://libstorage.readthedocs.io/en/stable/user-guide/config/#logging-configuration]

	Configuring [http://libstorage.readthedocs.io/en/stable/user-guide/config/#driver-configuration]
OS, integration, and storage drivers

Data Directories

The first time REX-Ray is executed it will create several directories if
they do not already exist:

	/etc/rexray

	/var/log/rexray

	/var/run/rexray

	/var/lib/rexray

The above directories will contain configuration files, logs, PID files, and
mounted volumes. However, the location of these directories can also be
influenced with the environment variable REXRAY_HOME.

REXRAY_HOME can be used to define a custom home directory for REX-Ray.
This directory is irrespective of the actual REX-Ray binary. Instead, the
directory specified in REXRAY_HOME is the root directory where the REX-Ray
binary expects all of the program’s data directories to be located.

For example, the following command sets a custom value for REXRAY_HOME and
then gets a volume list:

env REXRAY_HOME=/tmp/rexray rexray volume

The above command would produce a list of volumes and create the following
directories in the process:

	/tmp/rexray/etc/rexray

	/tmp/rexray/var/log/rexray

	/tmp/rexray/var/run/rexray

	/tmp/rexray/var/lib/rexray

The entire configuration section will refer to the global configuration file as
a file located inside of /etc/rexray, but it should be noted that if
REXRAY_HOME is set the location of the global configuration file can be
changed.

Configuration Methods

There are three ways to configure REX-Ray:

	Command line options

	Environment variables

	Configuration files

The order of the items above is also the order of precedence when considering
options set in multiple locations that may override one another. Values set
via CLI flags have the highest order of precedence, followed by values set by
environment variables, followed, finally, by values set in configuration files.

Configuration Files

There are two REX-Ray configuration files - global and user:

	/etc/rexray/config.yml

	$HOME/.rexray/config.yml

Please note that while the user configuration file is located inside the user’s
home directory, this is the directory of the user that starts REX-Ray. And
if REX-Ray is being started as a service, then sudo is likely being used,
which means that $HOME/.rexray/config.yml won’t point to your home
directory, but rather /root/.rexray/config.yml.

The next section has an example configuration with the default configuration.

Configuration Properties

The section Configuration Methods mentions there are
three ways to configure REX-Ray: config files, environment variables, and the
command line. However, this section will illuminate the relationship between the
names of the configuration file properties, environment variables, and CLI
flags.

Here is a sample REX-Ray configuration:

rexray:
 logLevel: warn
libstorage:
 service: virtualbox
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

The properties rexray.logLevel, libstorage.service, and
virtualbox.volumePath are strings. These values can also be set via
environment variables or command line interface (CLI) flags, but to do so
requires knowing the names of the environment variables or CLI flags to use.
Luckily those are very easy to figure out just by knowing the property names.

All properties that might appear in the REX-Ray configuration file
fall under some type of heading. For example, take the configuration above:

The rule for environment variables is as follows:

	Each nested level becomes a part of the environment variable name followed
by an underscore _ except for the terminating part.

	The entire environment variable name is uppercase.

Nested properties follow these rules for CLI flags:

	The root level’s first character is lower-cased with the rest of the root
level’s text left unaltered.

	The remaining levels’ first characters are all upper-cased with the the
remaining text of that level left unaltered.

	All levels are then concatenated together.

	See the verbose help for exact global flags using rexray --help -v
as they may be chopped to minimize verbosity.

The following table illustrates the transformations:

Property Name | Environment Variable | CLI Flag
————–|———————-|————-
rexray.logLevel | REXRAY_LOGLEVEL | --logLevel
libstorage.service | LIBSTORAGE_SERVICE | --libstorageService
virtualbox.volumePath | VIRTUALBOX_VOLUMEPATH | --virtualboxVolumePath

Logging Configuration

The REX-Ray log file is, by default, stored at /var/log/rexray/rexray.log.

Log Levels

The REX-Ray log level determines the level of verbosity emitted by the
internal logger. The default level is warn, but there are three other levels
as well:

Log Level | Description
———–|————-
error | Log only errors
warn | Log errors and anything out of place
info | Log errors, warnings, and workflow messages
debug | Log everything

For example, the following two commands may look slightly different, but they
are functionally the same, both printing a list of volumes using the debug
log level:

Use the debug log level - Example 1

rexray volume -l debug ls

Use the debug log level - Example 2

env REXRAY_LOGLEVEL=debug rexray volume ls

Verbose mode

To enable the most verbose logging, use the following configuration snippet:

rexray:
 logLevel: debug
libstorage:
 logging:
 level: debug
 httpRequests: true
 httpResponses: true

The following command line example is the equivalent to the above configuration
example:

$ REXRAY_DEBUG=true \
 LIBSTORAGE_LOGGING_HTTPREQUESTS=true \
 LIBSTORAGE_LOGGING_HTTPRESPONSES=true \
 rexray ...

Applications

Persistence for applications in containers.

Getting Started

This tutorial will serve as a generic guide for taking Docker images found on
Docker Hub [http://hub.docker.com] and utilizing persistent external storage
via REX-Ray. This should provide guidance for certain applications, but also
generically so you can add persistence properly to other applications.

Instructions

The following are a set of instructions for investigating an existing container
image to determine how to properly apply persistence.

The first step is to determine which application you are looking to deploy, then
proceed to its Docker Hub [http://hub.docker.com] page. In this example, we
will be using PostgreSQL on Docker Hub [https://hub.docker.com/_/postgres/].

Most application vendors will post their Dockerfile on the main page for that
given image. Many of them will also make them available by version minimally via
a download or via Github. Continuing with our PostgreSQL example, we will use
the Dockerfile for version 9.3 [https://github.com/docker-library/postgres/blob/ed23320582f4ec5b0e5e35c99d98966dacbc6ed8/9.3/Dockerfile]
since it happens to be the default version provided with Ubuntu 14.04.

Properly written Dockerfiles will include the proper information that separates
persistent information from the container image and deployed container. This is
visible when the author of the Dockerfile includes a VOLUME statement to
define where stateful information should be held.

Open the Dockerfile and do a search for VOLUME and take note of the
volumes that will be created for this image. Then we can use REX-Ray or
Docker to create the external persistent volume for this image. In the
PostgreSQL 9.3 example, there is a single volume in the Dockerfile:

VOLUME /var/lib/postgresql/data

The single path or paths listed refer to the volumes that should be attached
when running the container. Following this you can create a volume and attach
it to a container with the -v flag.

	PostgreSQL [https://hub.docker.com/_/postgres/]

$ docker volume create --driver=rexray --name=postgresql --opt=size=<sizeInGB>
$ docker run -d -e POSTGRES_PASSWORD=mysecretpassword --volume-driver=rexray \
 -v data:/var/lib/postgresql/data postgres

Popular Applications

External persistent storage can be applied to any number of applications
including but not limited the following examples.

	Cassandra [https://hub.docker.com/_/cassandra/]

	PostgreSQL [https://hub.docker.com/_/postgres/]

 $ docker volume create --driver=rexray --name=postgresql --opt=size=<sizeInGB>
 $ docker run -d -e POSTGRES_PASSWORD=mysecretpassword --volume-driver=rexray \
 -v data:/var/lib/postgresql/data postgres

	MariaDB [https://hub.docker.com/_/mariadb/]

	MongoDB [https://hub.docker.com/_/mongo/]

 $ docker volume create --driver=rexray --name=mongodb --opt=size=<sizeInGB>
 $ docker run -d --volume-driver=rexray -v mongodb:/data/db mongo

	MySQL [https://hub.docker.com/_/mysql/]

	Redis [https://hub.docker.com/_/redis/]

 $ docker volume create --driver=rexray --name=redis --opt=size=<sizeInGB>
 $ docker run -d --volume-driver=rexray -v redis:/data redis

Schedulers

Scheduling storage one resource at a time...

Overview

This page reviews the scheduling systems supported by REX-Ray.

Docker

The majority of the documentation for the Docker integration driver has been
relocated [http://libstorage.readthedocs.io/en/stable/user-guide/schedulers/#docker]
to the libStorage project.

External Access

By default, REX-Ray’s embedded Docker Volume Plug-in endpoint handles
requests from the local Docker service via a UNIX socket. Doing so
restricts the endpoint to the localhost, increasing network security by removing
a possible attack vector. If an externally accessible Docker Volume Plug-in
endpoint is required, it’s still possible to create one by overriding the
address for the default-docker module in REX-Ray’s configuration file:

rexray:
 modules:
 default-docker:
 host: tcp://:7981

The above example illustrates how to override the default-docker module’s
endpoint address. The value tcp://:7981 instructs the Docker Volume Plug-in
to listen on port 7981 for all configured interfaces.

Using a TCP endpoint has a side-effect however – the local Docker instance
will not know about the Volume Plug-in endpoint as there is no longer a UNIX
socket file in the directory the Docker service continually scans.

On the local system, and in fact on all systems where the Docker service needs
to know about this externally accessible Volume Plug-in endpoint, a spec file
must be created at /etc/docker/plug-ins/rexray.spec. Inside this file simply
include a single line with the network address of the endpoint. For example:

tcp://192.168.56.20:7981

With a spec file located at /etc/docker/plug-ins/rexray.spec that contains
the above contents, Docker instances will query the Volume Plug-in endpoint at
tcp://192.168.56.20:7981 when volume requests are received.

Volume Management

The volume sub-command for Docker 1.12+ should look similar to the following:

$ docker volume

Usage: docker volume [OPTIONS] [COMMAND]

Manage Docker volumes

Commands:
 create Create a volume
 inspect Return low-level information on a volume
 ls List volumes
 rm Remove a volume

List Volumes

The list command reviews a list of available volumes that have been discovered
via Docker Volume Plug-in endpoints such as REX-Ray. Each volume name is
expected to be unique. Thus volume names must also be unique across all
endpoints, and in turn, across all storage platforms exposed by REX-Ray.

With the exception of the local driver, the list of returned volumes is
generated by the backend storage platform to which the configured driver
communicates:

$ docker volume ls
DRIVER VOLUME NAME
local local1
scaleio Volume-001
virtualbox vbox1

Inspect Volume

The inspect command can be used to retrieve details about a volume related to
both Docker and the underlying storage platform. The fields listed under
Status are all generated by REX-Ray, including Size in GB, Volume Type,
and Availability Zone.

The Scope parameter ensures that when the specified volume driver is
inspected by multiple Docker hosts, the volumes tagged as global are all
interpreted as the same volume. This reduces unnecessary round-trips in
situations where an application such as Docker Swarm is connected to hosts
configured with REX-Ray.

$ docker volume inspect vbox1
[
 {
 "Name": "vbox1",
 "Driver": "virtualbox",
 "Mountpoint": "",
 "Status": {
 "availabilityZone": "",
 "fields": null,
 "iops": 0,
 "name": "vbox1",
 "server": "virtualbox",
 "service": "virtualbox",
 "size": 8,
 "type": ""
 },
 "Labels": {},
 "Scope": "global"
 }
]

Create Volume

Docker’s volume create command enables the creation of new volumes on the
underlying storage platform. Newly created volumes are available immediately
to be attached and mounted. The volume create command also supports the CLI
flag -o|--opt in order to support providing custom data to the volume creation
workflow:

$ docker volume create --driver=virtualbox --name=vbox2 --opt=size=2
vbox2

Additional, valid options for the -o|--opt parameter include:

option|description
——|———–
size|Size in GB
IOPS|IOPS
volumeType|Type of Volume or Storage Pool
volumeName|Create from an existing volume name
volumeID|Create from an existing volume ID
snapshotName|Create from an existing snapshot name
snapshotID|Create from an existing snapshot ID

Remove Volume

A volume may be removed once it is no longer in use by a container, running or
otherwise. The process of removing a container actually causes the volume to
be removed if that is the last container to leverage said volume:

$ docker volume rm vbox2

Containers with Volumes

Please review the Applications section for information on
configuring popular applications with persistent storage via Docker and REX-Ray.

Kubernetes

REX-Ray can be integrated with Kubernetes [https://kubernetes.io/] allowing
pods to consume data stored on volumes that are orchestrated by REX-Ray. Using
Kubernetes’ FlexVolume [https://kubernetes.io/docs/user-guide/volumes/#flexvolume]
plug-in, REX-Ray can provide uniform access to storage operations such as attach,
mount, detach, and unmount for any configured storage provider. REX-Ray provides an
adapter script called FlexREX which integrates with the FlexVolume to interact
with the backing storage system.

Pre-Requisites

	Kubernetes [https://kubernetes.io/] 1.5 or higher

	REX-Ray 0.7 or higher

	jq binary [https://stedolan.github.io/jq/]

	Kubernetes kubelets must be running with enable-controller-attach-detach disabled

Installation

It is assumed that you have a Kubernetes cluster at your disposal. On each
Kubernetes node (running the kubelet), do the followings:

	Install and configure the REX-Ray binary as prescribed in the
Installation section.

	Next, validate the REX-Ray installation by running rexray volume ls
as shown in the the following:

rexray volume ls
ID Name Status Size
925def7200000006 vol01 available 32
925def7100000005 vol02 available 32

If there is no issue, you should see an output, similar to above, which shows
a list of previously created volumes. If instead you get an error,ensure that REX-Ray is properly configured for the intended storage system.

Next, using the REX-Ray binary, install the FlexREX adapter script on the node
as shown below.

rexray flexrex install

This should produce the following output showing that the FlexREX script is
installed successfully:

Path Installed Modified
/usr/libexec/kubernetes/kubelet-plug-ins/volume/exec/rexray~flexrex/flexrex true false

The path shown above is the default location where the FlexVolume plug-in will
expect to find its integration code. If you are not using the default location
with FlexVolume, you can install the FlexREX in an arbitrary location using:

rexray flexrex install --path /opt/plug-ins/rexray~flexrex/flexrex

!!! note
FlexREX requires that the enable-controller-attach-detach flag for the
kubelet is set to False.

Next, restart the kubelet process on the node:

systemctl restart kubelet

You can validate that the FlexREX script has been started successfully by searching
the kubelet log for an entry similar to the following:

I0208 10:56:57.412207 5348 plug-ins.go:350] Loaded volume plug-in "rexray/flexrex"

Pods and Persistent Volumes

You can now deploy pods and persistent volumes that use storage systems orchestrated
by REX-Ray. It is worth pointing out that the Kubernetes FlexVolume plug-in can only
attach volumes that already exist in the storage system. Any volume that is to be used
by a Kubernetes resource must be listed in a rexray volume ls command.

Pod with REX-Ray volume

The following YAML file shows the definition of a pod that uses FlexREX to attach a volume
to be used by the pod.

apiVersion: v1
kind: Pod
metadata:
 name: pod-0
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: pod-0
 volumeMounts:
 - mountPath: /test-pd
 name: vol-0
 volumes:
 - name: vol-0
 flexVolume:
 driver: rexray/flexrex
 fsType: ext4
 options:
 volumeID: test-vol-1
 forceAttach: "true"
 forceAttachDelay: "15"

Notice in the section under flexVolume the name of the driver attribute
driver: rexray/flexrex. This is used by the FlexVolume plug-in to launch REX-Ray.
Additional options can be provided in the options: as follows:

Option|Desription
——|———-
volumeID|Reference name of the volume in REX-Ray (Required)
forceAttach|When true ensures the volume is available before attaching (optional, defaults to false)
forceAttachDelay|Total amount of time (in sec) to attempt attachment with 5 sec interval between tries (optional)

REX-Ray PersistentVolume

The next example shows a YAML definition of Persistent Volume (PV) managed
by REX-Ray.

apiVersion: v1
kind: PersistentVolume
metadata:
 name: vol01
spec:
 capacity:
 storage: 32Gi
 accessModes:
 - ReadWriteOnce
 persistentVolumeReclaimPolicy: Retain
 flexVolume:
 driver: rexray/flexrex
 fsType: xfs
 options:
 volumeID: redis01
 forceAttach: "true"
 forceAttachDelay: "15"

The next YAML shows a Persistent Volume Claim (PVC) that carves out 10Gi out of
the PV defined above.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: vol01
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

The claim can then be used by a pod in a YAML definition as shown below:

apiVersion: v1
kind: Pod
metadata:
 name: pod-1
spec:
 containers:
 - image: gcr.io/google_containers/test-webserver
 name: pod-1
 volumeMounts:
 - mountPath: /test-pd
 name: vol01
 volumes:
 - name: vol01
 persistentVolumeClaim:
 claimName: vol01

Mesos

In Mesos the frameworks are responsible for receiving requests from
consumers and then proceeding to schedule and manage tasks. While some
frameworks, like Marathon, are open to run any workload for sustained periods
of time, others are use case specific, such as Cassandra. Frameworks may
also receive requests from other platforms in addition to schedulers instead of
consumers such as Cloud Foundry, Kubernetes, and Swarm.

Once a resource offer is accepted from Mesos, tasks are launched to support the
associated workloads. These tasks are eventually distributed to Mesos agents in
order to spin up containers.

REX-Ray enables on-demand storage allocation for agents receiving tasks via
two deployment configurations:

	Docker Containerizer with Marathon

	Mesos Containerizer with Marathon

Docker Containerizer with Marathon

When the framework leverages the Docker containerizer, Docker and REX-Ray
should both already be configured and working. The following example shows
how to use Marathon in order to bring an application online with external
volumes:

{
 "id": "nginx",
 "container": {
 "docker": {
 "image": "million12/nginx",
 "network": "BRIDGE",
 "portMappings": [{
 "containerPort": 80,
 "hostPort": 0,
 "protocol": "tcp"
 }],
 "parameters": [{
 "key": "volume-driver",
 "value": "rexray"
 }, {
 "key": "volume",
 "value": "nginx-data:/data/www"
 }]
 }
 },
 "cpus": 0.2,
 "mem": 32.0,
 "instances": 1
}

Mesos Containerizer with Marathon

Mesos 0.23+ includes modules that enable extensibility for different
portions of the architecture. The dvdcli [https://github.com/codedellemc/dvdcli] and
mesos-module-dvdi [https://github.com/codedellemc/mesos-module-dvdi] projects are
required to enable external volume support with the native containerizer.

The next example is similar to the one above, except in this instance the
native containerizer is preferred and volume requests are handled by the
env section.

{
 "id": "hello-play",
 "cmd": "while [true] ; do touch /var/lib/rexray/volumes/test12345/hello ; sleep 5 ; done",
 "mem": 32,
 "cpus": 0.1,
 "instances": 1,
 "env": {
 "DVDI_VOLUME_NAME": "test12345",
 "DVDI_VOLUME_DRIVER": "rexray",
 "DVDI_VOLUME_OPTS": "size=5,iops=150,volumetype=io1,newfstype=xfs,overwritefs=true"
 }
}

This example also illustrates several important settings for the native method.
While the VirtualBox driver is being used, any validated storage platform
should work. Additionally, there are two options recommended for this type of
configuration:

Property | Recommendation
———|—————
libstorage.integration.volume.operations.mount.preempt | Setting this flag to true ensures any host can preempt control of a volume from other hosts
libstorage.integration.volume.operations.unmount.ignoreUsedCount | Enabling this flag declares that mesos-module-dvdi is the authoritative source for deciding when to unmount volumes

Please refer to the libStorage documentation for more information on
Volume Configuration [http://libstorage.readthedocs.io/en/stable/user-guide/config/#volume-configuration]
options.

!!! note “note”

The `libstorage.integration.volume.operations.remove.disable` property can
prevent the scheduler from removing volumes. Setting this flag to `true` is
recommended when using Mesos with Docker 1.9.1 or earlier.

libstorage:
 service: virtualbox
 integration:
 volume:
 operations:
 mount:
 preempt: true
 unmount:
 ignoreusedcount: true
 remove:
 disable: true
virtualbox:
 volumePath: $HOME/VirtualBox/Volumes

Demo

Easy as 1, 2, 3...

Two-Node Client/Server

This demo consists of a two-node deployment with the first node configured as a
REX-Ray/libStorage server and the second node as merely a client. Both nodes
have Docker installed and configured to leverage REX-Ray for persistent storage.

The below example does have a few requirements:

	VirtualBox 5.0+

	Vagrant 1.8+

	Ruby 2.0+

Start REX-Ray Vagrant Environment

Before bringing the Vagrant environment online, please ensure it is accomplished
in a clean directory

$ cd $(mktemp -d)

Inside the newly created, temporary directory, download the REX-Ray
Vagrantfile [https://github.com/emccode/rexray/master/Vagrantfile]:

$ curl -fsSLO https://raw.githubusercontent.com/emccode/rexray/master/Vagrantfile

Now it is time to bring the REX-Ray environment online:

!!! note “note”

The next step could potentially open up the system on which the command is
executed to security vulnerabilities. The Vagrantfile brings the VirtualBox
web service online if it is not already running. However, in the name of
simplicity the Vagrantfile also disables the web server's authentication
module. Please do not disable authentication for the VirtualBox web server
if this example is being executed on an open network or without some type of
firewall in place.

$ vagrant up

The above command should result in output similar to this
Gist [https://gist.github.com/akutz/13fc3b2237ea2c295a25c2e367e6bd8f].

Once the command has been completed successfully there will be two VMs online
named node0 and node1. Both nodes are running Docker and REX-Ray with
node0 configured to act as a libStorage server.

Now that the environment is online it is time to showcase Docker leveraging REX-
Ray to create persistent storage as well as illustrating REX-Ray’s distributed
deployment capabilities.

Node 0

First, SSH into node0

$ vagrant ssh node0

From node0 use Docker with REX-Ray to create a new volume named
hellopersistence:

vagrant@node0:~$ docker volume create --driver rexray --opt size=1 \
 --name hellopersistence

After the volume is created, mount it to the host and container using the
--volume-driver and -v flag in the docker run command:

vagrant@node0:~$ docker run -tid --volume-driver=rexray \
 -v hellopersistence:/mystore \
 --name temp01 busybox

Create a new file named myfile on the file system backed by the persistent
volume using docker exec:

vagrant@node0:~$ docker exec temp01 touch /mystore/myfile

Verify the file was successfully created by listing the contents of the
persistent volume:

vagrant@node0:~$ docker exec temp01 ls /mystore

Remove the container that was used to write the data to the persistent volume:

vagrant@node0:~$ docker rm -f temp01

Finally, exit the SSH session to node0:

vagrant@node0:~$ exit

Node 1

It’s time to connect to node1 and use the volume hellopersistence that was
created in the previous section from node0.

!!! note “note”

While `node1` runs both the Docker and REX-Ray services like `node0`, the
REX-Ray service on `node1` in no way understands or is configured for the
VirtualBox storage driver. All interactions with the VirtualBox web service
occurs via `node0`'s libStorage server with which `node1` communicates.

Use the vagrant command to SSH into node1:

$ vagrant ssh node1

Next, create a new container that mounts the existing volume,
hellopersistence:

vagrant@node1:~$ docker run -tid --volume-driver=rexray \
 -v hellopersistence:/mystore \
 --name temp01 busybox

The next command validates the file myfile created from node0 in the
previous section has persisted inside the volume across machines:

vagrant@node1:~$ docker exec temp01 ls /mystore

Finally, exit the SSH session to node1:

vagrant@node1:~$ exit

Cleaning Up

Be sure to kill the VirtualBox web server with a quick killall vboxwebsrv and
to tear down the Vagrant environment with vagrant destroy. Omitting these
commands will leave the web service and REX-Ray Vagrant nodes online and consume
additional system resources.

Congratulations

REX-Ray has been used to provide persistence for stateless containers! Examples
using MongoDB, Postgres, and more with persistent storage can be found at
Application Examples or within the {code} Labs
repo [https://github.com/codedellemc/labs].

Docker Volume Plug-ins

Plug it in, plug it in...

Overview

This page reviews the REX-Ray Docker volume plug-ins, available for
Docker 1.13+.

Getting Started

This section describes how to get started with REX-Ray Docker volume plug-ins!

Installation

Docker plug-ins can be installed with following command:

$ docker plugin install rexray/driver[:version]

In the above command line, if [:version] is omitted, it’s equivalent to
the following command:

$ docker plugin install rexray/driver:latest

The latest tag refers to the most recent, GA version of a plug-in. The
[:version] component is known as a Docker tag. It follows the semantic
versioning model. However, in addition to latest, there is also the edge
tag which refers to the most recent version built from the master development
branch.

!!! note “note”
Please note that most of REX-Ray’s plug-ins must be configured and
installed at the same time since Docker starts the plug-in when installed.
Otherwise the plug-in will fail since it is not yet configured. Please
see the sections below for platform-specific configuration options.

Configuration

Docker volume plug-ins are configured via environment variables, and all
REX-Ray plug-ins share the following, common configuration options:

Environment Variable | Description | Default Value
———————|————-|————–
REXRAY_FSTYPE | The type of file system to use | ext4
REXRAY_LOGLEVEL | The log level | warn
REXRAY_PREEMPT | Enable preemption | false

Amazon

REX-Ray has plug-ins for multiple Amazon Web Services (AWS) storage services.

Elastic Block Service

The EBS plug-in can be installed with the following command:

$ docker plugin install rexray/ebs \
 EBS_ACCESSKEY=abc \
 EBS_SECRETKEY=123

Privileges

The EBS plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the EBS
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
EBS_ACCESSKEY | The AWS access key | | ✓
EBS_SECRETKEY | The AWS secret key | | ✓
EBS_REGION | The AWS region | us-east-1 |

Elastic File System

The EFS plug-in can be installed with the following command:

$ docker plugin install rexray/efs \
 EFS_ACCESSKEY=abc \
 EFS_SECRETKEY=123 \
 EFS_SECURITYGROUPS="sg-123 sg-456" \
 EFS_TAG=rexray

Requirements

The EFS plug-in requires that nfs utilities be installed on the
same host on which Docker is running. You should be able to mount an
nfs export to the host.

Privileges

The EFS plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the EFS
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
EFS_ACCESSKEY | The AWS access key | | ✓
EFS_SECRETKEY | The AWS secret key | | ✓
EFS_REGION | The AWS region | |
EFS_SECURITYGROUPS | The AWS security groups to bind to | default |
EFS_TAG | Only consume volumes with tag (tag\volume_name)| |
EFS_DISABLESESSIONCACHE | new AWS connection is established with every API call | false |

Simple Storage Service

The S3FS plug-in can be installed with the following command:

$ docker plugin install rexray/s3fs \
 S3FS_ACCESSKEY=abc \
 S3FS_SECRETKEY=123

Privileges

The S3FS plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the S3FS
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
S3FS_ACCESSKEY | The AWS access key | | ✓
S3FS_SECRETKEY | The AWS secret key | | ✓
S3S_REGION | The AWS region | |

Dell EMC

REX-Ray includes plug-ins for several Dell EMC storage platforms.

Isilon

The Isilon plug-in can be installed with the following command:

$ docker plugin install rexray/isilon \
 ISILON_ENDPOINT=https://isilon:8080 \
 ISILON_USERNAME=user \
 ISILON_PASSWORD=pass \
 ISILON_VOLUMEPATH=/ifs/rexray \
 ISILON_NFSHOST=isilon_ip \
 ISILON_DATASUBNET=192.168.1.0/24

Requirements

The Isilon plug-in requires that nfs utilities be installed on the
same host on which Docker is running. You should be able to mount an
nfs export to the host.

Privileges

The Isilon plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the Isilon
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
ISILON_ENDPOINT | The Isilon web interface endpoint | | ✓
ISILON_INSECURE | Flag for insecure gateway connection | false |
ISILON_USERNAME | Isilon user for connection | | ✓
ISILON_PASSWORD | Isilon password | | ✓
ISILON_VOLUMEPATH | The path for volumes (eg: /ifs/rexray) | | ✓
ISILON_NFSHOST | The host or ip of your isilon nfs server | | ✓
ISILON_DATASUBNET | The subnet for isilon nfs data traffic | | ✓
ISILON_QUOTAS | Wanting to use quotas with isilon? | false |

ScaleIO

The ScaleIO plug-in can be installed with the following command:

$ docker plugin install rexray/scaleio \
 SCALEIO_ENDPOINT=https://gateway/api \
 SCALEIO_USERNAME=user \
 SCALEIO_PASSWORD=pass \
 SCALEIO_SYSTEMNAME=scaleio \
 SCALEIO_PROTECTIONDOMAINNAME=default \
 SCALEIO_STORAGEPOOLNAME=default

Requirements

The ScaleIO plug-in requires that the SDC toolkit must be installed on the
same host on which Docker is running.

Privileges

The ScaleIO plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
| /bin/emc
| /opt/emc/scaleio/sdc
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the ScaleIO
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
REXRAY_FSTYPE | The type of file system to use | xfs |
SCALEIO_ENDPOINT | The ScaleIO gateway endpoint | | ✓
SCALEIO_INSECURE | Flag for insecure gateway connection | true |
SCALEIO_USECERTS | Flag indicating to require certificate validation | false |
SCALEIO_USERNAME | ScaleIO user for connection | | ✓
SCALEIO_PASSWORD | ScaleIO password | | ✓
SCALEIO_SYSTEMID | The ID of the ScaleIO system to use | | If SCALEIO_SYSTEMID is omitted
SCALEIO_SYSTEMNAME | The name of the ScaleIO system to use | | If SCALEIO_SYSTEMNAME is omitted
SCALEIO_PROTECTIONDOMAINID | The ID of the protection domain to use | | If SCALEIO_PROTECTIONDOMAINNAME is omitted
SCALEIO_PROTECTIONDOMAINNAME | The name of the protection domain to use | | If SCALEIO_PROTECTIONDOMAINID is omitted
SCALEIO_STORAGEPOOLID | The ID of the storage pool to use | | If SCALEIO_STORAGEPOOLNAME is omitted
SCALEIO_STORAGEPOOLNAME | The name of the storage pool to use | | If SCALEIO_STORAGEPOOLID is omitted
SCALEIO_THINORTHICK | The provision mode (Thin|Thick)Provisioned | |
SCALEIO_VERSION | The version of ScaleIO system | |

Google

REX-Ray ships with plug-ins for Google Compute Engine (GCE) as well.

GCE Persistent Disk

The GCEPD plug-in can be installed with the following command:

$ docker plugin install rexray/gcepd \
 GCEPD_TAG=rexray

Requirements

The GCEPD plug-in requires that GCE compute instance has Read/Write Cloud API
access to the Compute Engine and Storage services.

Privileges

The GCEPD plug-in requires the following privileges:

Type | Value
—–|——
network | host
mount | /dev
allow-all-devices | true
capabilities | CAP_SYS_ADMIN

Configuration

The following environment variables can be used to configure the GCEPD
plug-in:

Environment Variable | Description | Default | Required
———————|————-|———|———
GCEPD_DEFAULTDISKTYPE | The default disk type to consume | pd-ssd |
GCEPD_TAG | Only use volumes that are tagged with a label | |
GCEPD_ZONE | GCE Availability Zone | |

Examples

This section reviews examples of how to use the REX-Ray Docker Volume plug-ins.
For the purposes of the examples the EBS plug-in will be demonstrated, but
each example would work for any of the plug-ins above.

Create a volume

The following example illustrates creating a volume:

$ docker volume create --driver rexray/ebs --name test-vol-1

Verify the volume was successfully created by listing the volumes:

$ docker volume ls
DRIVER VOLUME NAME
rexray/ebs test-vol-1

Inspect a volume

The following example illustrates inspecting a volume:

$ docker volume inspect test-vol-1

[
 {
 "Driver": "rexray/ebs",
 "Labels": {},
 "Mountpoint": "/var/lib/docker/plug-ins/9f30ec546a4b1bb19574e491ef3e936c2583eda6be374682eb42d21bbeec0dd8/rootfs",
 "Name": "test-vol-1",
 "Options": {},
 "Scope": "global",
 "Status": {
 "availabilityZone": "default",
 "fields": null,
 "iops": 0,
 "name": "test-vol-1",
 "server": "ebs",
 "service": "ebs",
 "size": 16,
 "type": "default"
 }
 }
]

Use a volume

The following example illustrates using a volume:

$ docker run -v test-vol-1:/data busybox mount | grep "/data"
/dev/xvdf on /data type ext4 (rw,seclabel,relatime,nouuid,attr2,inode64,noquota)

Remove a volume

The following example illustrates removing a volume created:

$ docker volume rm test-vol-1

Validate the volume was deleted successfully by listing the volumes:

$ docker volume ls
DRIVER VOLUME NAME

Installation

Getting the bits, bit by bit

Overview

There are several different methods available for installing REX-Ray. It
is written in Go, so there are typically no dependencies that must be installed
alongside its single binary file. The manual methods can be extremely simple
through tools like curl. You also have the opportunity to perform install
steps individually. Following the manual installs, configuration
must take place.

Great examples of automation tools, such as Ansible and Puppet, are also
provided. These approaches automate the entire configuration process.

Manual Installs

Manual installations are in contrast to batch, automated installations.

Make sure that before installing REX-Ray that you have uninstalled any previous
versions. A rexray uninstall can assist with this where appropriate.

Following an installation and configuration, you can use REX-Ray interactively
through commands like rexray volume. Noticeably different from this is having
REX-Ray integrate with Container Engines such as Docker. This requires that
you run rexray start or relevant service start command like
systemctl start rexray.

Install via curl

The following command will download the most recent, stable build of REX-Ray
and install it to /usr/bin/rexray or /opt/bin/rexray. On Linux systems
REX-Ray will also be registered as either a SystemD or SystemV service.

There is an optional flag to choose which version to install. Notice how we
specify stable, see the additional version names below that are also valid.

curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s -- stable

Install a specific version

You can install a particular version like this:

$ curl -sSL https://dl.bintray.com/emccode/rexray/install | sh -s -- stable 0.7.0

The version shows during an install, but to see it again later:

$ rexray version

Install a pre-built binary

There are a handful of necessary manual steps to properly install REX-Ray
from pre-built binaries.

	Download the proper binary. There are also pre-built binaries available for
the various release types.

Version | Description
———|————
Unstable [https://dl.bintray.com/emccode/rexray/unstable/latest/] | The most up-to-date, bleeding-edge, and often unstable REX-Ray binaries.
Staged [https://dl.bintray.com/emccode/rexray/staged/latest/] | The most up-to-date, release candidate REX-Ray binaries.
Stable [https://dl.bintray.com/emccode/rexray/stable/latest/] | The most up-to-date, stable REX-Ray binaries.

	Uncompress and move the binary to the proper location. Preferably /usr/bin
should be where REX-Ray is moved, but this path is not required.

	Install as a service with rexray install. This will register itself
with SystemD or SystemV for proper initialization.

Build and install from source

It is also easy to build REX-Ray from source using Docker:

$ git clone https://github.com/codedellemc/rexray && make -C rexray

For building REX-Ray without Docker or to review the various build options
please see the Build Reference.

Uninstall

Depending on how it was installed, REX-Ray can be installed one of a few ways:

RPM

If REX-Ray was installed on a system that uses the RPM package management
system, such as Redhat, CentOS, the following command can be used to uninstall
REX-Ray:

$ sudo rpm -e rexray

DEB

If REX-Ray was installed on a system that uses the DEB package management
system, such as Debian, Ubuntu, the following command can be used to uninstall
REX-Ray:

$ sudo dpkg --remove rexray

Default

No matter how REX-Ray was installed, the following command will always attempt
to perform an uninstallation using the OS-recommended method:

$ sudo rexray uninstall

Automated Installs

Because REX-Ray is simple to install using the curl script, installation
using configuration management tools is relatively easy as well. However,
there are a few areas that may prove to be tricky, such as writing the
configuration file.

This section provides examples of automated installations using common
configuration management and orchestration tools.

Ansible

With Ansible, installing the latest REX-Ray binaries can be accomplished by
including the emccode.rexray role from Ansible Galaxy. The role accepts
all the necessary variables to properly fill out your config.yml file.

Install the role from Galaxy:

$ ansible-galaxy install emccode.rexray

Example playbook for installing REX-Ray on GCE Docker hosts:

- hosts: gce_docker_hosts
 roles:
 - { role: emccode.rexray,
 rexray_service: true,
 rexray_storage_drivers: [gce],
 rexray_gce_keyfile: "/opt/gce_keyfile" }

Run the playbook:

$ ansible-playbook -i <inventory> playbook.yml

AWS CloudFormation

With CloudFormation, the installation of the latest Docker and REX-Ray binaries
can be passed to the orchestrator using the ‘UserData’ property in a
CloudFormation template. While the payload could also be provided as raw user
data via the AWS GUI, it would not sustain scalable automation.

"Properties": {
 "UserData": {
 "Fn::Base64": {
 "Fn::Join": ["", [
 "#!/bin/bash -xe\n",
 "apt-get update\n",
 "apt-get -y install python-setuptools\n",
 "easy_install https://s3.amazonaws.com/cloudformation-examples/aws-cfn-bootstrap-latest.tar.gz\n",
 "ln -s /usr/local/lib/python2.7/dist-packages/aws_cfn_bootstrap-1.4-py2.7.egg/init/ubuntu/cfn-hup /etc/init.d/cfn-hup\n",
 "chmod +x /etc/init.d/cfn-hup\n",
 "update-rc.d cfn-hup defaults\n ",
 "service cfn-hup start\n",
 "/usr/local/bin/cfn-init --stack ", {
 "Ref": "AWS::StackName"
 }, " --resource RexrayInstance ", " --configsets InstallAndRun --region ", {
 "Ref": "AWS::Region"
 }, "\n",

 "# Install the latest Docker..\n",
 "/usr/bin/curl -o /tmp/install-docker.sh https://get.docker.com/\n",
 "chmod +x /tmp/install-docker.sh\n",
 "/tmp/install-docker.sh\n",

 "# add the ubuntu user to the docker group..\n",
 "/usr/sbin/usermod -G docker ubuntu\n",

 "# Install the latest REX-ray\n",
 "/usr/bin/curl -ssL -o /tmp/install-rexray.sh https://dl.bintray.com/emccode/rexray/install\n",
 "chmod +x /tmp/install-rexray.sh\n",
 "/tmp/install-rexray.sh\n",
 "chgrp docker /etc/rexray/config.yml\n",
 "reboot\n"
]]
 }
 }
}

Docker Machine (VirtualBox)

SSH can be used to remotely deploy REX-Ray to a Docker Machine. While the
following example used VirtualBox as the underlying storage platform, the
provided config.yml file could be modified to use any of the supported
drivers.

	SSH into the Docker machine and install REX-Ray.

 $ docker-machine ssh testing1 \
 "curl -sSL https://dl.bintray.com/emccode/rexray/install | sh"

	Install the udev extras package. This step is only required for versions of
boot2docker older than 1.10.

 $ docker-machine ssh testing1 \
 "wget http://tinycorelinux.net/6.x/x86_64/tcz/udev-extra.tcz \
 && tce-load -i udev-extra.tcz && sudo udevadm trigger"

	Create a basic REX-Ray configuration file inside the Docker machine.

Note: It is recommended to replace the volumePath parameter with the
local path VirtualBox uses to store its virtual media disk files.

 $ docker-machine ssh testing1 \
 "sudo tee -a /etc/rexray/config.yml << EOF
 libstorage:
 integration:
 volume:
 operations:
 mount:
 preempt: false
 virtualbox:
 volumePath: $HOME/VirtualBox/Volumes
 "

	Finally, start the REX-Ray service inside the Docker machine.

 $ docker-machine ssh testing1 "sudo rexray start"

OpenStack Heat

Using OpenStack Heat, in the HOT template format (yaml):

resources:
 my_server:
 type: OS::Nova::Server
 properties:
 user_data_format: RAW
 user_data:
 str_replace:
 template: |
 #!/bin/bash -v
 /usr/bin/curl -o /tmp/install-docker.sh https://get.docker.com
 chmod +x /tmp/install-docker.sh
 /tmp/install-docker.sh
 /usr/sbin/usermod -G docker ubuntu
 /usr/bin/curl -ssL -o /tmp/install-rexray.sh https://dl.bintray.com/emccode/rexray/install
 chmod +x /tmp/install-rexray.sh
 /tmp/install-rexray.sh
 chgrp docker /etc/rexray/config.yml
 params:
 dummy: ""

Vagrant

Using Vagrant is a great option to deploy pre-configured REX-Ray nodes,
including Docker, using the VirtualBox driver. All volume requests are handled
using VirtualBox’s Virtual Media.

A Vagrant environment and instructions using it are provided
here [https://github.com/codedellemc/vagrant/tree/master/rexray].

Troubleshooting

It’s not doing what I expected...

Solving problems

This section details the usual places and methods to look and use when
investigating a problem.

Is REX-Ray running?

Confirm REX-Ray is running with the following command:

$ sudo rexray service status

Active: active (running) since Sun 2017-02-12 02:19:16 UTC; 1 day 16h ago

Is REX-Ray listening?

Confirm REX-Ray is listening on a UNIX socket with the following command:

$ sudo lsof -noPU -a -c rexray
COMMAND PID USER FD TYPE DEVICE OFFSET NODE NAME
rexray 3228 root 5u unix 0xffff8800cc6eb800 0t0 38218 /var/run/libstorage/277666194.sock
rexray 3228 root 7u unix 0xffff880117792000 0t0 34741 socket
rexray 3228 root 8u unix 0xffff880117792400 0t0 38221 /var/run/libstorage/277666194.sock
rexray 3228 root 9u unix 0xffff8800cc6e8c00 0t0 38226 /run/docker/plugins/rexray.sock

Confirm REX-Ray is listening on a TCP port with the following command:

$ sudo lsof -noP -i -sTCP:LISTEN -a -c rexray
COMMAND PID USER FD TYPE DEVICE OFFSET NODE NAME
rexray 3400 root 4u IPv4 38868 0t0 TCP 127.0.0.1:5002 (LISTEN)

Is REX-Ray talking?

After confirming that the service is listening as expected, you can use curl
to actually invoke the libStorage REST API. This example shows doing it using
localhost but in a client server topology deployment you can also invoke it
from your client nodes (using the server’s external IP) to confirm that there
are no routing or firewall issues. This example uses http, but if you have
installed certificates, you should use https instead. This particular
invocation of the REST API lists the services (storage provider classes)
that are available to clients.

$ curl http://127.0.0.1:5002/services

{
 "ebs": {
 "name": "ebs",
 "driver": {
 "name": "ebs",
 "type": "block",
 "nextDevice": {
 "ignore": false,
 "prefix": "xvd",
 "pattern": "[f-p]"
 }
 }
 }
}

Common Errors

This section reviews common errors encountered when using REX-Ray.

!!! note “note”
General note: When running on a public cloud provider the error messages in
the log resulting from calls to a cloud provider API are repeated from the
cloud provider’s API. Sometimes these are not intuitive. For example a bad
credential might result in an error message related to a non-existent
object. Performing a google search in the context of your cloud provider,
rather than REX-Ray can sometimes prove to be helpful.

Starting REX-Ray

This error occurs when attempting to start REX-Ray service as a normal account,
rather than root or with sudo:

$ rexray service start
Failed to start rexray.service: Interactive authentication required.

Omitted service flag

This error occurs when there are multiple services configured and the service
specification is omitted from the command line:

$ rexray volume ls
FATA[0000] http error status=404

Missing REX-Ray config file

This error can occur when the REX-Ray configuration file is in the incorrect
location or one does not exist at all:

$ rexray volume ls
ERRO[0000] error starting libStorage server error.configKey=libstorage.server.services error.obj=<nil> time=1486771348853`

Invalid provider credentials

This error occurs when invalid credentials are provided for the storage
provider. The example below uses the EBS storage provider:

time="2017-02-10T22:34:44Z" level=error msg="error getting volume" host="tcp://127.0.0.1:7979" inner="AuthFailure: AWS was not able to validate the provided access credentials\n\tstatus code: 401, request id: ea6587a90-f29d-4f14-99da-6a7ec7cb05c1" instanceID="ebs=i-0213cc11c4ade43fb,availabilityZone=us-west-2a®ion=us-west-2" route=volumesForService server=dew-lady-tw service=ebs storageDriver=ebs task=0 time=1486766084055 tls=false txCR=1486726083 txID=05a5e1fd-094f-40ec-63f6-448d26ddde4f

Omitted service definition

This error occurs when the configuration file omits a service definition or
one is named erroneously:

Console

ERRO[0000] error starting libStorage server error.obj=<nil> error.configKey=libstorage.server.services time=1486772035132

Service Log

time="2017-02-11T00:13:25Z" level=error msg="error starting libStorage server" error.configKey=libstorage.server.services error.obj=<nil> time=1486772005732
time="2017-02-11T00:13:25Z" level=error msg="default module(s) failed to initialize" error.obj=<nil> error.configKey=libstorage.server.services time=1486772005732
time="2017-02-11T00:13:25Z" level=error msg="daemon failed to initialize" error.configKey=libstorage.server.services error.obj=<nil> time=1486772005732
time="2017-02-11T00:13:25Z" level=error msg="error starting rex-ray" error.obj=<nil> error.configKey=libstorage.server.services time=1486772005732

Storage Providers

Connecting storage and platforms...

Overview

The list of storage providers supported by REX-Ray now mirrors the validated
storage platform table from the libStorage project.

Supported Providers

The following storage providers and platforms are supported by REX-Ray.

Provider | Storage Platform(s)
———————-|——————–
Amazon EC2 | EBS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-ebs], EFS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-efs], S3FS [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#aws-s3fs]
Ceph | RBD [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#ceph-rbd]
Dell EMC | ScaleIO [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-scaleio], Isilon [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#dell-emc-isilon]
DigitalOcean | Block Storage [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#do-block-storage]
FittedCloud | EBS Optimizer [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers/#ebs-optimizer]
Google | GCE Persistent Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#gce-persistent-disk]
Microsoft | Azure Unmanaged Disk [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#azure-ud]
VirtualBox | Virtual Media [http://libstorage.readthedocs.io/en/stable/user-guide/storage-providers#virtualbox]

REX-Ray PlantUML Documentation

This directory contains PlantUML [http://plantuml.com/] (PUML) files which
contain examples of common REX-Ray workflows. Examples include:

	Volumes
	Creating a Volume

Creating a Volume

The following example (source) illustrates the volume
creation workflow, beginning with Docker and including REX-Ray’s Docker volume
endpoint service as well as the libStorage backend.

[image: volume-create.png]

Volume PlantUML Documentation

This directory contains PlantUML [http://plantuml.com/] (PUML) files which
contain examples of common REX-Ray volume workflows. Examples include:

	Creating a Volume

REX-Ray Docker Plug-in for Dell EMC ScaleIO

REX-Ray Docker Plug-in for Amazon S3FS

REX-Ray Docker Plug-in for Google GCE Persistent Disks

REX-Ray Docker Plug-in for Dell EMC Isilon

REX-Ray Docker Plug-in for Amazon EBS

REX-Ray Docker Plug-in for Amazon EFS

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/down-pressed.png

_images/volume-create.png
libStorage API
libStorage API

5
H
H
g
3
A
$
g
Hel i | S)) R N
i i 2
o g ¢ @
@ 2 g v o
2 2 o g v 9
= & B 2 2 2 = @
H o 5 & §E g g 2 . Bz . g % P
o & gl & E H g 2 3 I3 Ell F- 2 A
g o gle 5 5 - - g g| 2 g ¢ g 7 2 g ¢
3 & =l E{] a 3 g H H o & “« u H PR
gy £l §3 Y £ i B 5oys ot ot £ Bt
o & 5% 3§ s £ H H s 3z 3 3 g 3 3
I 3 g =l 3] 2 it B o B B B = > >
I E & g T I T - T]
15 gs ¢ g : 8 o f% i § g 8
~ ol o E - 1 - el = @ £ ° ~ "
““““““““ I 25 2| I SR . U 2 M 20l 70 5 20 U . £ 2 5

libStorage Client
libStorage Client

node0 - REX-Ray Se

24 Create volume response --scaleio01

scaleio01.sock
scaleio01.sock

Docker API I

node0 - Docker Service
Docker API I

1 1 Create container request --scaleio01

node0 - Command Line

_images/rexray-slide.gif

